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Introduction. It has been conjectured that only compact groups can possess
automorphisms which are ergodic with respect to Haar measure. This question
was first raised by P. Halmos [8, page 29] and was later investigated in
such papers as [12], [15], [17], [20], [24] and most recently in [2]. In
this paper we are concerned with an analogous question for a wider class
of mappings on a locally compact group, namely affine transformations. These
mappings were introduced into ergodic theory on compact abelian groups
by F. J. Hahn [6] and were studied in that context in [9] and [22] and
on arbitrary compact groups in [16] and [20]. For noncompact, nondiscrete,
locally compact abelian groups, it was shown independently in [17], [18]
and [20] that no affine transformation can be ergodic. That the same result
is valid for connected nonabelian groups was proved by R. K. Thomas [20].
On the other hand, a detailed study of the question of ergodicity of affine
transformations on discrete groups was carried out by D. Jonah and the
author [11]. In particular, it was shown in [11] that the only infinite discrete
groups possessing ergodic affine transformations are the cyclic group Z and
the dihedral group D_.

It follows from the result of Thomas on connected groups cited above
that our problem centers around the study of affine transformations on totally
disconnected groups (see Theorem 1 below). The main result of the present
work (Theorem 3) is that if G is a linear algebraic group defined over a
p-adic field k of characteristic zero and H is a locally compact group possessing
a continuous homomorphism p onto a sufficiently large subgroup of the group
G (k) of k-rational points of G such that ker p is a solvable extension of
a compact group, and if H possesses an ergodic affine transformation, then
H is compact.

Ergodic affine transformations. Let G be a locally compact group, \ be
a Haar measure on G, and T be a bicontinuous affine transformation on
G, i.e., T(x) = av(x), x € G, for some a € G and v € Aut(G). The
mapping T is called ergodic if N\(A)A(4°) = 0 for any measurable subset
A of G such that T (4) = A. More generally, if Xis any Hausdorff topological
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