Extension Theorems for BMO

PETER W. JONES

§1. Introduction. Let $\mathscr{Q} \subseteq \mathbb{R}^n$, $n \ge 2$ be a connected open set. We say that a function φ is in BMO(\mathscr{Q}) if φ is locally integrable and

(1.1)
$$\sup_{Q} \frac{1}{|Q|} \int_{Q} |\varphi - \varphi_{Q}| dx = ||\varphi||_{*,\mathscr{D}} < \infty$$

The above supremum is taken over all cubes $Q \subset \mathcal{D}$, and φ_Q denotes the mean value of φ over Q,

$$\varphi_{\mathcal{Q}} = \frac{1}{|\mathcal{Q}|} \int_{\mathcal{Q}} \varphi \, dx.$$

Under the norm $\|\cdot\|_{\star,\mathscr{D}}$, BMO(\mathscr{D}) is a Banach space of functions modulo constants. An equivalent norm on BMO(\mathscr{D}) is defined if in (1.1) we only take the supremum over all cubes $Q \subset \mathscr{D}$ with sides parallel to the axes. This fact we will not prove here; its proof should become clear after reading Section 2 of this paper. We adopt the conventions BMO(\mathbb{R}^n) = BMO and $\|\cdot\|_{\star,\mathbb{R}^n} = \|\cdot\|_{\star}$. See [12] and [18] for elementary properties of BMO functions.

The first problem treated in this paper is to find necessary and sufficient conditions on \mathscr{D} so that every function in BMO(\mathscr{D}) be the restriction to \mathscr{D} of a BMO function.

Let $\{Q_k\}$ be the dyadic Whitney decomposition of $\mathscr{D}.$ Then $\mathscr{D}=\cup Q_k$ and

$$Q_{j}^{0} \cap Q_{k}^{0} = \emptyset, \quad j \neq k$$

(1.3)
$$1 \le \frac{d(Q_j, \mathcal{D}^c)}{\operatorname{side}(Q_j)} \le 4\sqrt{n}, \quad j = 1, 2, \dots$$

(1.4)
$$\frac{1}{4} \leq \frac{\text{side }(Q_j)}{\text{side }(Q_k)} \leq 4 \quad \text{if } Q_j \cap Q_k \neq \emptyset.$$

Here $d(\cdot, \cdot)$ denotes Euclidean distance. See [20, page 167] for details.

In Section 2 we will define two distance functions, d_1 and d_2 , on the set of Whitney cubes, $E = \{Q_j\}$. Our first theorem can then be formulated as follows: