Analytic Properties of the Boundary of the Numerical Range

FRANCIS J. NARCOWICH

1. Introduction. Let \mathcal{H} be a complex, separable Hilbert space with inner product (\cdot, \cdot) , and norm $\|\cdot\|$; $B(\mathcal{H})$ denotes the set of bounded linear operators on \mathcal{H} . For $T \in B(\mathcal{H})$, the numerical range, its closure, and its topological boundary are, in order: W(T), $W(T)^-$, and $\partial W(T)$; $\sigma(T)$ is the spectrum.

The main result, obtained in Section 3 and precisely stated in Corollary 3.6, is that the boundary of the numerical range of a compact operator consists of a countable number of analytic arcs; singularities can accumulate at 0 or the endpoints of certain line segments. If 0 is not on the boundary, only a finite number of arcs are required. The self-contained proof used here relies chiefly on a theorem of Rellich [5, page 57]; B. Sz.-Nagy has an elegant, somewhat more elementary proof: see [4, page 376] concerning the behavior of isolated eigenvalues of a self-adjoint operator undergoing analytic perturbation. Agler [1] claims to have a proof of the main result.

As a byproduct of the techniques used to prove the main result, the results of Lancaster [2] concerning "corners" of the numerical range of a compact operator are obtained in a self-contained, elementary way. These techniques do not, however, extend to his more general results.

The rest of the paper is organized as follows: in Section 2, necessary geometric quantities are introduced and briefly discussed; in Section 3, the proof of the main result is given; in Section 4, the "corner" results mentioned above are obtained; in Section 5, boundary behavior is summarized, closing remarks are made and an example of a certain type of singularity is displayed.

2. Geometric quantities. Let W be a closed, bounded, convex subset of C with 0 as an interior point. For every unit vector $e^{i\theta}$ making an angle θ with the positive real axis, there is precisely one line, L_{θ} , tangent to W for which $e^{i\theta}$ is both normal and outward drawn from W. The distance from L_{θ} to 0 will be denoted by $a(\theta)$. (See Figure 1.)

No proofs will be given for the following propositions:

Proposition 2.1. $w \in L_{\theta}$ if and only if $Re(e^{-i\theta}w) = a(\theta)$.

Proposition 2.2. Every boundary point is on at least one tangent line; every tangent line intersects the boundary in at least one point.