A Wiener-Lévy Theorem for Quotients, with Applications to Volterra Equations

KENNETH B. HANNSGEN

1. Introduction. The use of transform methods to solve a linear integral or integrodifferential equation leads to the problem of determining properties of the solution from properties of its transform. For Volterra equations of convolution type on $\mathbf{R}^+(=[0,\infty))$ the complex Fourier transform, given by

(1.1)
$$A(\zeta) = a^*(\zeta) = \int_0^\infty e^{i\zeta t} a(t) dt \qquad (\zeta \in \mathbb{Z}),$$

 $(Z = \{ \text{Im } \zeta \ge 0 \})$ is often appropriate. If u is the solution of an equation, or if u is the difference between the solution and an approximate solution, the set on which u^* converges is not known at first; but if $u \in L^1(\mathbb{R}^+)$, then u^* is continuous in Z and analytic in the interior Z^0 , and $u^*(\zeta) \to 0$ as $\zeta \to \infty$ ($\zeta \in Z$). In this paper we give conditions which ensure that a given function $f(\zeta)$ is the transform of some u in $L^1(\mathbb{R}^+)$.

Among other things, we shall assume that

(1.2)
$$f(\zeta) = \frac{\varphi(\mathbf{A}(\zeta), \zeta)}{\psi(\mathbf{A}(\zeta), \zeta)},$$

where $\mathbf{A}=(A_1,A_2,\ldots,A_N)$ and each A_n is the transform of a function a_n in a certain subclass of $LL^1(\mathbf{R}^+)$ (LL^1 means locally integrable). φ and ψ are analytic in their N+1 variables, but $\varphi(\mathbf{A}(\zeta),\zeta)$ and $\psi(\mathbf{A}(\zeta),\zeta)$ vanish at the nonzero real points $\tau=\omega_j,\ 1\leq j\leq J<\infty$. Thus the present results complement a recent theorem of D. F. Shea and S. Wainger [14] (extended by G. S. Jordan and R. L. Wheeler [8]), in which $\psi\equiv 1$ and N=1. If, further, φ is independent of ζ and $a_1\in L^1(\mathbf{R}^+)$, the matter reduces to one form of the Wiener-Lévy Theorem [13, page 63].

We discuss applications to Volterra equations in Section 2.

We shall consider functions a in $LL^1(\mathbb{R}^+)$ which satisfy hypotheses H(M,D) as follows (M and D denote nonnegative integers).

H(M,0): $\int_0^\infty t^M |a(t)| dt < \infty$

H(M,1): a is a nonnegative and nonincreasing, and $\int_0^\infty t^{M-1} a(t) dt < \infty$.