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In the study of reflexive operator algebras with commutative subspace
lattices it is frequently of technical use to know of the existence of an operator
in the algebra which maps a given vector to a second given vector. For
example, Ringrose, in his initial study of nest algebras [2], makes effective
use of the existence of rank one operators in the algebra. In a further study
of nest algebras [1], Lance gives necessary and sufficient conditions on
vectors x and y to guarantee the existence of an operator 7 in a given nest
algebra such that Tx = y. In addition, Lance specifies the minimum norm
such an operator can have. It turns out that Lance’s Theorem is true in
the wider context of reflexive algebras with commutative subspace lattices;
it is the purpose of this note to prove Lance’s Theorem in this generality.

To begin, suppose that.& is a commutative subspace lattice (i.e. a complete
lattice of mutually commuting orthogonal projections which contains 0 and
1) acting on a Hilbert space # . Let &/ = Alg.#be the algebra of all bounded
linear operators on s# which leave invariant each projection E in . Assume
that x and y are vectors in /# and that S is an operator in .« such that
Sx = y. Then

IE*y|l = |E*Sx|| = [|E* SE " x|
=|SIIE* x|, forall E € .&

(Here, E* denotes 1-E, the complement of E, and we use the invariance
of E under S in the form E* S = E* SE ") If, for convenience, we adopt
the convention that a fraction whose numerator and denominator are both
zero is equal to zero, then the inequalities above may be stated in the form

I1E= ¥l
sup
Eez|E" x|

= [IS1.

The theorem which we shall prove is the following:

Theorem. Let . be a commutative subspace lattice acting on a Hilbert
space # and let o = Alg .& Let x and y be two vectors in # and assume
that
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