Reflection Methods in the Elastic-Plastic Torsion Problem

LUIS A. CAFFARELLI, AVNER FRIEDMAN & GIANNI POZZI

1. Introduction. Let Q be a simply connected domain in R^2 , and let μ be a positive number. Consider the variational inequality for a function u:

$$(1.1) \qquad \int_{Q} \nabla u \cdot \nabla (v - u) dx \ge \mu \int_{Q} (v - u) dx \qquad \forall v \in K, \ u \in K$$

where

$$K = \{ w \in H_0^1(Q), |\nabla w(x)| \le 1 \text{ a.e.} \}.$$

We assume that the boundary ∂Q of Q is piecewise C^3 , and denote the vertices of ∂Q by V_i $(1 \le i \le \tau)$.

We review some well-known facts (for more details see [1]-[3], [5]-[7], [9], [10]).

The problem (1.1) has a unique solution u. Further, $u \in W_{loc}^{2,\infty}(Q)$ and, for any subdomain Q_0 of Q such that $\partial Q_0 \cap \partial Q$ contains no vertices V_i , u is in $W^{2,p}(Q_0)$ for any $p < \infty$. The solution u coincides with the solution of the obstacle problem with d(x) as the obstacle from above; d(x) being the distance from x to ∂Q . That means that u solves (1.1) with K replaced by

$$K_0 = \{ w \in H_0^1(Q), w(x) \le d(x) \}.$$

The solution u is greater than or equal to zero. The sets

$$E = \{x \in \bar{Q}; |\nabla u(x)| < 1\}$$

$$P = \{x \in \bar{Q}; |\nabla u(x)| = 1\}$$

are called the *elastic* and *plastic* sets, respectively, and

$$E \cap Q = \{x \in Q; u(x) < d(x)\},\$$

$$P \cap Q = \{x \in Q; u(x) = d(x)\}.$$

The set $\partial E \cap Q$ is called the free boundary.

If a point x^0 in Q is plastic, and if y^0 is the nearest point to x^0 on ∂Q ,