A Note on Restriction

PETER A. TOMAS

Let φ be a positive, smooth function with support in [-1,1] and let $\varphi_{\delta}(\bar{x}) = \varphi(\delta^{-1}(|\bar{x}|-1))$. Define multipliers on $L^P(\mathbf{R}^2)$ by $\widehat{T_{\delta}f}(\bar{\xi}) = \varphi_{\delta}(\bar{\xi})\widehat{f}(\bar{\xi})$. A precise bound on the operators T_{δ} was used by Cordoba [2] to analyze Bochner-Riesz means. Recently, Cordoba [3] has shown

(1)
$$||T_{\delta}f||_{4} \le c |\log \delta|^{1/4} ||f||_{4}$$

where the norm estimate is optimal. From this estimate, Cordoba immediately derives the $L^4(\mathbb{R}^2)$ boundedness of Bochner-Riesz means, $(1 - |\bar{\xi}|^2)^{\lambda}_+$.

The purpose of this note is to establish a result which is in some sense dual, the estimate

(2)
$$||T_{\delta} \hat{f}||_{4} \leq c \delta^{3/4} |\log \delta|^{1/4} ||f||_{4}.$$

This estimate is optimal [4]. This is a "restriction" theorem, in the sense of Fefferman-Stein [5], as follows: $T_{\delta}\hat{f} = \hat{\varphi}_{\delta} * \hat{f}$. Dualizing, $\|\varphi_{\delta}\hat{f}\|_{4/3} \le c\delta^{3/4} \|\log \delta|^{1/4} \|f\|_{4/3}$, and $(1/\delta)^{1+\delta}_{1-\delta} \int_{S'} |\hat{f}(re^{i\theta})|^{4/3} r dr d\theta^{3/4} \le c \log \delta|^{1/4} \|f\|_{4/3}$. If the log δ factor were not present, one could take the limit as $\delta \to 0$, and obtain $\|\hat{f}\|_{4/3} \le c \|f\|_{4/3}$. This is known to be false, although the estimate

(3)
$$\|\hat{f}|_{S'}\|_{4/3} \le c_p \|f\|_p \qquad 1 \le p < 4/3$$

was established by Fefferman and Stein [5]. Estimate (2) therefore measures the extent to which (3) fails at p = 4/3.

The statements of (1) and (2) hint at subtle interplay between Bochner-Riesz and restriction. Such a connection has been made precise by Fefferman [5] (see also the work of Stein in [6]) and by Carleson and Sjolin [1]. The actual proof of estimate (2) follows a new proof by Cordoba [4] of (3), which in turn has many elements in common with the proof in [3] of (1). The connection does not seem to go deeper; in particular it will become clear that in spite of formal similarities, (2) is substantially easier than (1).

I am grateful to Professor A. Cordoba for showing me his unpublished work, which was central to the results in this paper.

To prove (2) we decompose φ_{δ} into 4 pieces, each supported in one quadrant. Rotational symmetry shows that it suffices to prove (2) for the piece with