$(\partial \bar{\partial})_b$ and the Real Parts of CR Functions

ERIC BEDFORD

1. Preliminaries. Let $\Gamma \subset \mathbb{C}^n$ be a smooth submanifold and let $\Lambda^{p,q}$ denote the smooth (p,q)-forms on \mathbb{C}^n . To study the action of $\partial\bar{\partial}$ tangential to Γ , we will take the induced boundary complex (cf. [1]). Locally we may find smooth functions r_1, \ldots, r_d such that $\Gamma = \{r_1 = \ldots = r_d = 0\}$ and $dr_1 \wedge \ldots \wedge dr_d \neq 0$ on Γ . We let $\mathscr{I}^{p,q}$ be the ideal in $\Lambda^{p,q}$ generated by $\{r_j, \partial r_j, \bar{\partial} r_j, \partial\bar{\partial} r_j \colon 1 \leq j \leq d\}$. It follows that $\partial\bar{\partial} (\mathscr{I}^{p,q}) \subset \mathscr{I}^{p+1,q+1}$. If we set $\mathscr{C}^{p,q} = \Lambda^{p,q} \mid_{\Gamma} (\text{mod } \mathscr{I}^{p,q})$, then the tangential complex $(\partial\bar{\partial})_{\Gamma}$ is defined as the map on the quotient

$$(\partial\bar{\partial})_{\Gamma} \colon \mathscr{C}^{p,q} \to \mathscr{C}^{p+1,q+1}$$

induced by $\partial\bar{\partial}$. Clearly, $\mathscr{C}^{0,0}=C^{\infty}(\Gamma)$. If $\mathscr{C}^{p,q}$ and $\mathscr{C}^{p+1,q+1}$ have constant dimension on Γ , they are vector bundles, and $(\partial\bar{\partial})_{\Gamma}$ is a system of second order differential operators.

If Γ is a hypersurface, then locally it is the boundary of an open set, and $(\partial\bar{\partial})_{\Gamma}$ in this case will also be called the boundary complex $(\partial\bar{\partial})_b$. When Γ is a hypersurface, $\mathscr{C}^{1,1}$ has dimension $(n-1)^2$ if $\partial r \wedge \bar{\partial} r \wedge \partial \bar{\partial} r = 0$ on Γ , and $(n-1)^2 - 1$ otherwise. If n = 2, we have $(\partial\bar{\partial})_b = 0$ unless $\partial r \wedge \bar{\partial} r \wedge \partial \bar{\partial} r = 0$, i.e. Γ is Levi flat. If Γ is Levi flat, then $\partial_b \bar{\partial}_b = (\partial\bar{\partial})_b$; otherwise, these two operators are different.

 Γ is said to be a \widehat{CR} manifold if the dimension of $\mathscr{I}^{1,0}$ is constant on Γ . In this case, we may choose a subset of $\{r_1,\ldots,r_d\}$, which we write as $\{r_1,\ldots,r_e\}$, such that $\{\partial r_1,\ldots,\partial r_e\}$ generates $\mathscr{I}^{1,0}$ locally and $\partial r_1 \wedge \ldots \partial r_e \neq 0$. A simple computation shows that $u \in \Lambda^{p,q}$ satisfies $(\partial \bar{\partial})_{\Gamma} u = 0$ if and only if there are (p,q)-forms α_1,\ldots,α_d such that

(1)
$$\partial r_1 \wedge \ldots \wedge \partial r_e \wedge \bar{\partial} r_1 \wedge \ldots \wedge \bar{\partial} r_e \wedge \partial \bar{\partial} u$$

$$= \partial r_1 \wedge \ldots \wedge \partial r_e \wedge \bar{\partial} r_1 \wedge \ldots \wedge \bar{\partial} r_e \wedge \sum_{j=1}^d \alpha_j \wedge \partial \bar{\partial} r_j$$

holds. It is immediate that if f is a CR function on Γ , then $(\partial \bar{\partial})_{\Gamma}$ Re f = 0; the point of this paper is to establish the converse of this fact.

Since we are only interested in $(\partial \bar{\partial})_{\Gamma}$ acting on functions (0-forms), we give another description of the condition $(\partial \bar{\partial})_{\Gamma} u = 0$. At a point $z \in \Gamma$ we may define a subspace of second order operators on Γ by