Higher Integrability from Reverse Hölder Inequalities

E. W. STREDULINSKY

The following was motivated by the need for a generalization of a lemma of F. W. Gehring [1]. The accidental deletion of the hypothesis "g = 0 in $\mathbb{R}^n - Q$ " left the lemma false as stated, thus leaving several papers [2], [3], which quoted [1], in doubt. The present result substantiates the claims in [2], [3]. A similar but less general result has been shown by M. Giaquinta in a paper yet to appear.

It is convenient to first prove a Stieltjes integral lemma. Here it is assumed that $h: [1/k,\infty) \to [0,\infty)$ is nonincreasing, right continuous and $h(t) \to 0$ as $t \to \infty$. Also $H: [1/k,\infty) \to [0,\infty)$ is measurable, q > 1, a > 1, k > 1 and p satisfies $1 > ak^{p-1}(p-q)/(p-1)$, with $p \ge q$.

Lemma. If
$$-\int_{(t,\infty)} s^{q-1} dh(s) \le at^{q-1} (h(t/k) + H(t/k))$$
 for $t \ge 1$ then

$$-\int_{(1,\infty)} s^{p-1} dh(s) \le c_1 \left(-\int_{(1,\infty)} s^{q-1} dh(s)\right) + c_2 \int_{(1,\infty)} t^{p-2} H(t/k) dt + c_3 h(1/k).$$

Proof. Let $I_p^j = -\int_{\{1,j\}} s^{p-1} dh(s)$. So by integration by parts we have

(1)
$$I_p^j = -\int_{(1,j]} t^{p-q} t^{q-1} dh(t) = I_q^j + (p-q)J$$

where
$$J = \int_{(1,j)} t^{p-q-1} \left(- \int_{(t,j]} s^{q-1} dh(s) \right) dt$$
.

Combining this with the hypothesis we get

(2)
$$J \leq \int_{(1,j)} t^{p-q-1} \left(at^{q-1} \left[h(t/k) + H(t/k) \right] + \int_{(j,\infty)} s^{q-1} dh(s) \right) dt$$

but
$$\int_{(1,j)} t^{p-2} h(t/k) dt = k^{p-1} \int_{(1/k,j/k)} t^{p-2} h(t) dt$$