Approximation Theorems for Stochastic Operators

A. IWANIK

This paper deals with the convex set \mathscr{S} of all stochastic operators on L^1 [0,1] (see Section 1 for definitions). In Sections 3 and 4 it is shown that the group \mathscr{G} of positive invertible isometries and its convex hull conv \mathscr{G} are dense in \mathscr{S} for the weak and strong operator topologies, respectively (Theorem 1 and Corollary 1) The strong operator closure of \mathscr{G} is identified as the set of all positive isometries (Theorem 2). This extends corresponding results of J. R. Brown for doubly stochastic operators [1] and is related to C. W. Kim [11] and [12].

In Section 5 we prove that the set \mathcal{O} of all stochastic operators without invariant sets and its subset \mathcal{O}_{μ} consisting of those possessing an equivalent invariant measure μ are, respectively, norm dense in \mathcal{S} and strong operator residual in the set \mathcal{S}_{μ} of all μ -preserving stochastic operators (Corollary 3 and Proposition 4). This last result is an analog of the classical result of Halmos on the residuality of ergodic transformations in the measure preserving invertible ones [6]. Next it is shown that "most" stochastic operators are conservative and ergodic (Theorem 3); this can be viewed as an extension of a similar result obtained recently by Choksi and Kakutani for invertible positive isometries [3, Theorem 3].

Section 6 is devoted to operators on L^2 [0,1]. In particular, it is shown that the positive invertible L^2 -isometries (unlike positive L^1 -isometries) span a strong operator dense linear subspace of all continuous linear operators (Corollary 5).

1. Terminology and notation. Let (X,Σ,m) denote the unit interval with Borel σ -algebra and Lebesgue measure. A function $\tau\colon X\to X$ which is $\Sigma-\Sigma$ measurable and nonsingular (i.e. $m(A)=0\Rightarrow m\tau^{-1}(A)=0$) is called a transformation. A transformation τ is called invertible if τ^{-1} exists and is also a transformation.

Every transformation τ induces an operator in $\mathscr{L}(L^{\infty}(m))$ defined by $h \to h \circ \tau$ ($h \in L^{\infty}(m)$). It is a positive contraction and is easily seen to be the adjoint of a $T_{\tau} \in \mathscr{L}(L^{1}(m))$. In fact, if the elements of $L^{1}(m)$ are