Upper Semi-continuity and the Monge-Ampère Differential Inequality

VICTOR L. SHAPIRO

1. Introduction. We shall operate in Euclidean *n*-space, \mathbb{R}^n , $n \ge 2$, and set

(1.1)
$$\mathscr{L} u = (-1)^n \det(\partial^2 u / \partial x_i \partial x_i).$$

In this paper, we shall refer to

$$(1.2) \mathcal{L}u \leq 0$$

as the Monge-Ampère differential inequality (see [2, page 326] and [4, page 152]). In particular, for n = 2,

$$\mathscr{L}u = \partial^2 u / \partial x_1^2 \partial^2 u / \partial x_2^2 - (\partial^2 u / \partial x_1 \partial x_2)^2.$$

 $B(x^o, r_o)$ will designate the open *n*-ball with center x^o and radius r_o . If u is in $L^1[B(x^o, r_o)]$ and if there is a polynomial P(x) without constant term of degree k, k a positive integer, such that

(1.3)
$$r^{-n} \int_{B(0,r)} |u(x^o + x) - u(x^o) - P(x)| dx = o(r^k)$$

as $r \to 0$, u will be said to be in $t_k^1(x^o)$ (see [1, page 172]). If k = 1, we set $D_i u(x^o) = \partial P(x)/\partial x_i$. If k = 2, we set $D_{ij} u(x^o) = \partial^2 P(x)/\partial x_i \partial x_j$. Clearly, if u is in $t_2^1(x^o)$, then u is also in $t_1^1(x^o)$.

We shall say $\mathscr{L}u \leq 0$ pointwise at x^o provided u is in $t_2^1(x^o)$ and furthermore $(-1)^n$ det $[D_{ij}u(x^o)] \leq 0$. In particular, it is clear that if u is in C^2 in a neighborhood of x^o and satisfies (1.2) classically at x^o , then u satisfies (1.2) pointwise at x^o .

Next, let Ω be a fixed bounded open connected set in \mathbb{R}^n containing the origin which is starlike with respect to the origin. We shall suppose also that there is a function g continuous in \mathbb{R}^n with the following seven properties:

(1.4)
$$\partial \Omega = \{x : g(x) = 1\} \text{ and } \Omega = \{x : g(x) < 1\}.$$

$$(1.5) g(0) = 0.$$

(1.6)
$$g(t_1 x) < g(t_2 x)$$
 for $0 \le t_1 < t_2 \le 1$ and $x \text{ in } \partial \Omega$.

Indiana University Mathematics Journal ©, Vol. 29 No. 3 (1980)