On the Marcinkiewicz Integral and Functions of Bounded Mean Oscillation

ALBERTO TORCHINSKY & RICHARD L. WHEEDEN

Introduction. A result due to M. Weiss and A. Zygmund [11] states that if F(x) is periodic and for some $\beta > 1/2$ satisfies the smoothness condition

$$\Delta^{2} F(x;t) = F(x+t) + F(x-t) - 2F(x) = 0(t |\log t|^{-\beta}),$$

t>0, uniformly in x, then F is the indefinite integral of a function belonging to L^p for every $p<\infty$. An example showing that the conclusion fails when $\beta=1/2$ is also given. The result for $\beta>1/2$ was strengthened by John and Nirenberg [4], who showed by a different technique that F' is actually of bounded mean oscillation. One purpose of this note is to obtain essentially the same conclusion under weaker assumptions, and to show there are n-dimensional and local versions of the result.

The smoothness condition above of course becomes stronger as β increases. In case $\beta=0$, it is the classical Λ^* condition of Zygmund, and is satisfied by the indefinite integral of a function of bounded mean oscillation. The following particularly simple proof of this fact is due to A. P. Calderón. Let $\theta(s)$ be the odd function equal to 0 for $|s| \geq 1$, -1 for -1 < s < 0, and +1 for 0 < s < 1. Then if $F(x) = \int^x f$ and c is any number,

$$|\Delta^{2} F(x;t)| = \left| \int f(s) \, \theta \left(\frac{x-s}{t} \right) ds \right|$$

$$= \left| \int \left[f(s) - c \right] \, \theta \left(\frac{x-s}{t} \right) ds \right|$$

$$\leq \int_{|x-s| \le t} |f(s) - c| \, ds.$$

Choosing c to be the integral average of f over $\{s: |x - s| < t\}$, we see that the last expression is 0(t) if f is of bounded mean oscillation (see the definition which follows). We give below another condition which is necessary and, in a sense, also sufficient for F to be the integral of a function of bounded mean oscillation.