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1. Introduction. We present a boundary regularity result which in some
sense generalizes the work of Brezis and Kinderlehrer [1]. To be precise,
we prove boundary regularity if the operator in the variational inequality
is a linear elliptic operator. However, our methods may easily be adapted
to prove the interior regularity result in [1] for a monotone vector field.

We shall now proceed to a more detailed explanation of our work. The
discussion of our results is facilitated by introducing the following definitions
and notation.

(1.1 Q, an open domain in R” with smooth boundary, 9{}.

L= 2 a,j(x)

ij=1

- 2 by — + ¢(x)

—+ x)— + c(x),

ax,0x; 5 ! ax,
a symmetric uniformly elliptic operator with a,(x) € ok (9))
b(x) € C*(Q)forl =i,j=n, c(x) € C*(Q) and ¢(x) = 0.

(1.3) ¢, a function in C"*(Q) (the obstacle).

(1.9 g a function in C*(3Q2) and g = ¢|,, (the boundary data).

(1.5)  f, a function in L*(Q).

(1.6) K={veH Q):v|,,=gandv = d}.

(1.7) (+,+) the L*? inner product or the usual evaluation map on
H™' x Hj.

(1.8) w, the solution of the variational inequality: w € K and for all
veEK (Lw,v—w)=(f,v—w).

We shall now discuss the two regularity results. Let x, be a point in Q.
From [1] it follows that if there is a neighborhood, N,, of x, such that
f € CN, N Q)and ¢ € C"'(N, N Q) then there is a neighborhood,
N,, of x, such thatw € W>™(N,). By interpreting the second derivatives
of the solution as functions satisfying Neumann conditions at the boundary
instead of just Dirichlet conditions, we have been able to extend the previous
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