Boundary Regularity for Variational Inequalities

ROBERT JENSEN

1. Introduction. We present a boundary regularity result which in some sense generalizes the work of Brezis and Kinderlehrer [1]. To be precise, we prove boundary regularity if the operator in the variational inequality is a linear elliptic operator. However, our methods may easily be adapted to prove the interior regularity result in [1] for a monotone vector field.

We shall now proceed to a more detailed explanation of our work. The discussion of our results is facilitated by introducing the following definitions and notation.

(1.1) Ω , an open domain in \mathbb{R}^n with smooth boundary, $\partial \Omega$.

$$L \equiv \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x) \frac{\partial}{\partial x_{i}} + c(x),$$

a symmetric uniformly elliptic operator with $a_{ij}(x) \in C^{2,\alpha}(\bar{\Omega})$ $b_i(x) \in C^{\alpha}(\bar{\Omega})$ for $1 \le i, j \le n, c(x) \in C^{\alpha}(\bar{\Omega})$ and $c(x) \ge 0$.

- (1.3) ϕ , a function in $C^{1,\alpha}(\bar{\Omega})$ (the obstacle).
- (1.4) g, a function in $C^{\alpha}(\partial\Omega)$ and $g \geq \phi|_{\partial\Omega}$ (the boundary data).
- (1.5) f, a function in $L^2(\Omega)$.
- (1.6) $\mathbf{K} \equiv \{ v \in H^1(\Omega) : v|_{\partial \Omega} = g \text{ and } v \ge \phi \}.$
- (1.7) $\langle \cdot, \cdot \rangle$ the L^2 inner product or the usual evaluation map on $H^{-1} \times H_0^1$.
- (1.8) w, the solution of the variational inequality: $w \in \mathbf{K}$ and for all $v \in \mathbf{K} \langle Lw, v w \rangle \ge \langle f, v w \rangle$.

We shall now discuss the two regularity results. Let x_0 be a point in Ω . From [1] it follows that if there is a neighborhood, N_1 , of x_0 such that $f \in C^{\alpha}(N_1 \cap \Omega)$ and $\phi \in C^{1,1}(N_1 \cap \Omega)$ then there is a neighborhood, N_2 , of x_0 such that $w \in W^{2,\infty}(N_2)$. By interpreting the second derivatives of the solution as functions satisfying Neumann conditions at the boundary instead of just Dirichlet conditions, we have been able to extend the previous