A Simple Proof of Mehler’s Formula for
q-Hermite Polynomials

D. M. BRESSOUD

The g-Hermite polynomials, H,(x|q), |g| < 1, can be defined by their
generating function:
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relation:
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or by their Fourier expansion:
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These polynomials have been studied by Rogers [5] [6] [7] [8], Szego
[9], Carlitz [3] [4] and Askey and Ismail [1]. The Rogers-Ramanujan identities
first arose in the study of these polynomials (see Rogers [7], Bressoud [2]).
The g-Hermite polynomials are also of formal interest, for they have been
found to satisfy analogs of many of the formulae known for the Hermite
polynomials. Among these is a g-analog of Mehler’s formula:
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