Holomorphic Extension of the Scattering Amplitude for Moving Obstacles

JEFFERY COOPER & WALTER STRAUSS

This paper is a sequel to our paper [2]. We are studying the scattering properties of solutions of

(1)
$$u_{ii} - \Delta u = 0$$
 in Q , $u = 0$ on $\Sigma = \partial Q$

where Q is a domain in space-time \mathbb{R}^{n+1} , n odd, $n \geq 3$. The obstacle $\mathcal{O}(t)$ at time t is the t-cross section of the complement of Q.

We continue to assume that $\mathcal{O}(t)$ varies smoothly and remains in a bounded set in \mathbb{R}^n . Under the assumptions $(\operatorname{CP})_+$ and $(\operatorname{LD})_+$ (see below) the scattering operator S is well defined. It has a translation representation $S^\#$ and a spectral representation \tilde{S} , both of which are bounded linear operators on $L^2(R\times S^{n-1})$ where S^{n-1} is the unit sphere in \mathbb{R}^n . The kernel $K^\#$ of $S^\#-I$ is called the echo kernel; the kernel \tilde{K} of $\tilde{S}-I$ is the scattering amplitude. Both $K^\#$ and \tilde{K} are tempered distributions on $\mathbb{R}\times S^{n-1}\times \mathbb{R}\times S^{n-1}$.

In [2] we obtained representations for \tilde{K} and $K^{\#}$ in terms of the reflections of plane waves $\psi(x,t;\sigma,\omega)$ for *real* frequency σ and direction $\omega \in S^{n-1}$, provided these reflections exist. A sufficient condition for their existence is the uniform decay of local energy $(ULD)_{+}$.

In this paper we only assume $(CP)_+$ and $(LD)_+$. We prove the existence of $\psi(x,t;\sigma,\omega)$ for complex frequencies σ with Im $\sigma<0$. Both $K^\#$ and \tilde{K} can be simply expressed in terms of the asymptotic values of these reflections. We can also express $K^\#$ in terms of the asymptotic values of the reflection of a plane pulse.

It is a consequence of [2, Theorem 13b] that when $\sigma' - \sigma = \lambda$ is real, $\tilde{K}(\sigma',\omega';\sigma,\omega) = \tilde{K}(\sigma + \lambda,\omega';\sigma,\omega)$ has a holomorphic extension to Im $\sigma < 0$ with values in a space of tempered distributions. In this paper we show that $\sigma \to \tilde{K}(\sigma + \lambda,\omega';\sigma,\omega)$ takes values in $H^{1-\epsilon}(\mathbf{R}_{\lambda}:L^2(S^{n-1}\times S^{n-1}))$. As a further improvement over the results of [2], we find that when the motion of the obstacle has period T, we may express \tilde{K} as a series

$$\tilde{K}(\sigma',\omega';\sigma,\omega) = \sum_{m=-\infty}^{+\infty} A_m(\sigma,\omega',\omega)\delta(\sigma'-\sigma-m\nu)$$