Orthogonal Complements to Invariant Subspaces

WILLIAM S. COHN

Introduction. Let D be a finitely connected domain in the plane bounded by n+1 analytic Jordan curves. That is, we have $\partial D = \gamma_1 \cup \ldots \cup \gamma_{n+1}$. Let $H^2(D)$ denote the usual class of holomorphic functions f on D, i.e. $|f|^2$ has a harmonic majorant. $H^{\infty}(D)$ is the space of all holomorphic functions on D which are bounded. A closed subspace M of H^2 is said to be invariant if $fg \in M$ for all $f \in M$ and $g \in H^{\infty}$. The theory of such subspaces is well known. For D = U, the unit disk, it can be found in Hoffman [5]. For the general case, see Voichick [7], or Sarason [6]. Each M has the form $M = sH^2$, where $s \in H^{\infty}$ is an inner function. That is, $|s(z)| \leq 1$ on D, and

$$|s| = 1$$
 a.e. on γ_{n+1} and $|s| = c_i$ a.e. on γ_i $i = 1, ..., n$.

"Almost everywhere" is with respect to ds, arclength.

In [1], Ahern and Clark study $M^{\perp} = H^2(U) \ominus sH^2(U)$. An important special case occurs when s has the form

$$s(z) = \exp\left(-\int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\sigma(\theta)\right)$$

where $d\sigma > 0$ is nonatomic and singular with respect to $d\theta$. They construct an operator $V: L^2(d\sigma) \to M^{\perp}$ given by

$$(Vc)(z) = \int_0^{2\pi} \sqrt{2} c(\lambda) s_{\lambda}(z) (1 - e^{-i\lambda} z)^{-1} d\sigma (\theta),$$

where $s_{\lambda}(z) = \exp(-\int_{0}^{\lambda} e^{i\theta} + z/e^{i\theta} - z \, d\sigma(\theta))$. Ahern and Clark prove that V is an isometry of $L^{2}(d\sigma)$ onto M^{\perp} . As an application they study the operator $V^{*}TV$ on L^{2} , where T is the restricted shift on M^{\perp} : Tf = Pzf, where P is orthogonal projection onto M^{\perp} . It turns out that $V^{*}TV$ is the sum of multiplication by z and a compact integral operator.

It is the purpose of this paper to generalize the results of Ahern and Clark to $M^{\perp} = H^{2}(D) \ominus sH^{2}(D)$. Although we can handle an arbitrary inner function,