Full Houses and Cones of Excessive Functions

THOMAS E. ARMSTRONG

0) Introduction. A gambler in a gambling house Γ may be faced with a lower bounded payoff function s which is such that no matter which fortune or distribution of fortunes he possesses he is always better off not taking a gamble available other than staying put at his initial fortune (if this is available). Such payoff functions are called excessive functions. Excessive functions form a convex cone which contains the constants and is closed under arbitrary lower bounded pointwise infima. We show that any cone of lower bounded functions on a set F which has these properties is the cone of excessive functions for some gambling house Γ on F, Proposition 5.

If \mathscr{E} is a cone of excessive functions for a gambling house Γ on the fortune space F there may be other houses with the same cone of excessive functions. We show that there is a largest such house, the full house $\hat{\Gamma}$, associated with Γ . The gambles γ in $\hat{\Gamma}$ available at a fortune f are precisely those such that no matter which excessive payoff function s the gambler faces he would be better off staying at f than taking the gamble γ . That is, $\int s d\gamma \leq s(f)$ for all $s \in \mathcal{E}$. This is the definition of the relation $\delta_{\ell} < \gamma$. More generally, if a gambler has initial distribution of fortunes ν and $\dot{\gamma}$ is another distribution such that the expected payoff under ν for any excessive payoff function s is greater than the expected payoff under γ , γ is said to dominate ν and we write $\gamma > \nu$. We show how to construct the full house $\hat{\Gamma}$ from Γ . In fact we show that $\gamma > \nu$ iff there is a finitely additive probability distribution p on the set of policies available in Γ with initial distribution ν so that γ is the p average of the terminal distributions of these policies. Thus, γ is a randomized policy distribution starting from the initial distribution ν . The full house $\hat{\Gamma}$ has available at a fortune f the randomized terminal distributions of policies available in Γ at f.

We conclude with several examples of cones which are cones of excessive functions for some gambling house. Concave functions on a convex set, monotone functions on a partially ordered set, hypermedian functions in potential theory (both axiomatic and probabilistic) all form excessive cones.