Projections onto Spaces of Holomorphic Functions

CLINTON KOLASKI

I. Introduction. In [3] Kolaski showed, for a large class of measures σ , the Hilbert space generated by the analytic polynomials in $L^2(\sigma)$ has a reproducing kernel C_{σ} . In this note we show that the integral operator T_{σ} with kernel C_{σ} is a closed projection of $L^p(\sigma)$ onto the space of holomorphic functions in $L^p(\sigma)$ ($1 \le p < \infty$), and that T_{σ} is unbounded when regarded as an operator on $L^1(\sigma)$. Concerning the generality of the projections T_{σ} , we remark that T_{σ} is the Bergman projection when σ is taken to be Lebesgue measure on an N-circular subset of \mathbb{C}^N .

For a given positive integer N, C^N will denote the vector space of all ordered N-tuples $z = (z_1, ..., z_N)$ of complex numbers, with inner product

(1)
$$\langle z, w \rangle = z_1 \bar{w}_1 + \dots + z_N \bar{w}_N$$

and norm

$$|z| = \langle z, z \rangle^{1/2}.$$

Throughout this paper σ shall ALWAYS denote a CLASS K MEASURE, i.e., σ is a non-negative, bounded, Borel measure on \mathbb{C}^N which satisfies (3), (4) and (5), (Examples and comments can be found in [3].):

(3)
$$F_{\sigma} = \text{Support } \sigma \text{ is compact,}$$

$$(4) F_{\sigma} \subset \bigcup_{i=1}^{N} \{z_i = 0\},$$

(5) σ is invariant under the rotations $(z_1,...,z_N) \rightarrow (e^{i\theta_1} \cdot z_1,...,e^{i\theta_N} \cdot z_N) \ (0 \le \theta_i \le 2\pi, \ 1 \le i \le N).$

We associate to each measure σ the complete Reinhardt domain

(6)
$$\Omega_{\sigma} = \text{Interior Holomorphic Hull } F_{\sigma}$$

and the moments

(7)
$$\hat{\sigma}(\alpha) = \int z^{\alpha} \, \bar{z}^{\alpha} d\sigma(z), \qquad (>0 \text{ by 4})$$

where $\alpha = (\alpha_1, ..., \alpha_N) \in Z_+^N$ is an N-tuple of non-negative integers, and