The Distortion Coefficient of an Operator with Bounded Characteristic Function

BRIAN W. McENNIS

1. Introduction. Let T be an operator on a Hilbert space \mathfrak{G} , and suppose that T is similar to a contraction: $||STS^{-1}|| \le 1$ for some invertible operator S from \mathfrak{G} to a Hilbert space \mathfrak{G}' . The distortion coefficient of T is the number M(T) defined by

$$(1.1) M(T) = \inf \{ ||S|| \cdot ||S^{-1}|| : ||STS^{-1}|| \le 1 \}.$$

M(T) can also be defined by

(1.2) $M(T) = \inf \{ m^{-1}M \colon |T| \le 1 \text{ with respect to some inner product norm } |\cdot| \text{ satisfying } 0 \le m \|h\| \le |h| \le M \|h\| \text{ for all } h \in \mathfrak{H} \}.$

(See [5] and [6].)

A sufficient condition for T to be similar to a contraction is that its characteristic function Θ_T be bounded:

(1.3)
$$\sup \{ \|\Theta_{\tau}(\lambda)\| : |\lambda| < 1 \} = C < \infty.$$

(See [3] for a definition of the characteristic function and a proof of this result.) We obtain here an estimate for M(T) in terms of C:

Theorem 1. If C is given by (1.3) and
$$K = (2C^2 + 1)^{1/2}$$
, then $M(T) \le \sqrt{2} K^3 (K^2 + 1)^{1/2}$.

In proving this theorem we make use of a dilation U of T, constructed by Ch. Davis [2], in which the Hilbert space \mathfrak{F} is considered as a subspace of a larger space \mathfrak{F} . On \mathfrak{F} we have an indefinite inner product [.,.] (i.e., [h,h] can be negative for some $h \in \mathfrak{F}$) and a Hilbert space inner product (.,.). The two inner products are related by

$$(1.4) (h,k) = [Jh,k],$$

where J is a symmetry on $\Re: J^2 = I$ and $J^* = J$. (Throughout this paper, A^* will denote the adjoint of an operator A formed with respect to the Hilbert space inner product: $(Ah,k) = (h,A^*k)$. With J^* , however, it clearly makes no difference (because of (1.4)) which inner product is used.) We let $\|\cdot\|$ denote the J-norm on $\Re:$

$$||h|| = (h,h)^{1/2} = [Jh,h]^{1/2}.$$

We call any space with this structure a Krein space (see [1] and [8]).