When Two Entire Functions and also their First Derivatives Have the Same Zeros

GARY G. GUNDERSEN

1. Introduction. We say two entire functions f(z) and g(z) share the value a CM when f(z) - a and g(z) - a have the same zeros counting multiplicities. C. Yang has proven:

Theorem A. [7] Suppose two transcendental entire functions f and g satisfy the following three conditions:

- (a) f and g share 0 CM, and all the zeros are simple.
- (b) f' and g' share 0 CM.
- (c) $\rho = \max \left[\overline{\lim} \log \log \log M(r, f) / \log r \right]$

 $\lim \log \log \log M(r,g)/\log r] < 1.$

Then f and g satisfy exactly one of the following two relations:

- (I) $f(z) = c(g(z))^k$ where c and k are constants, or
- (II) $f(z) = c_1 e^{\gamma(z)} + c_2$, $g(z) = c_3 (c_2 e^{-\gamma(z)} + c_1)$, where c_1 , c_2 , and c_3 are constants and γ is entire of order less than one.

His example $f(z) = \exp(e^z)$ and $g(z) = e^{2z}$ shows that condition (c) is necessary in Theorem A. He also notes that the conclusion still holds if (a) is replaced by (a') f and g share 0 CM and the exponent of convergence of the multiple zeros is less than $1 - \rho$.

We will prove:

Theorem 1. f and g are entire functions of finite order such that f, g share 0 CM and f', g' share 0 CM if and only if we have exactly one of the following four cases:

- 1. f(z) = Cg(z) where $C \neq 0$ is a constant and f is entire with order $(f) < \infty$;
- 2. $f(z) = e^{p(z)}$, $g(z) = ae^{bp(z)}$, where $a \neq 0$, and $b \neq 0$, 1, are constants, and p is a non-constant polynomial;
- 3. $f(z) = a(e^{p(z)} 1)^n$, $g(z) = b(1 e^{-p(z)})^n$, where a, b are non-zero constants, n is a positive integer, and p is a non-constant polynomial;

4.
$$f(z) = \exp \left[\sum_{n=0}^{2N} a_n (2\pi i)^{-n} \left(\frac{p'(z)(p(z))^n}{1 - e^{-p(z)}} dz \right) \right],$$