Analyticity of the Boundary for Lipschitz Domains without the Pompeiu Property

STEPHEN A. WILLIAMS

1. Introduction. Let D be a nonempty bounded open subset of \mathbb{R}^n . In this paper we will always assume that $n \ge 2$. Let Σ denote the set of rigid motions of \mathbb{R}^n onto itself: Each $\sigma \in \Sigma$ can be thought of as a rotation followed by a translation. We say that D has the *Pompeiu property* if and only if the only continuous complex-valued function f defined on \mathbb{R}^n for which

$$\int_{\sigma(D)} f(x_1, x_2, ..., x_n) d\mathbf{x} = 0 \quad \text{for every } \sigma \in \Sigma$$

is the function $f \equiv 0$. Here $\sigma(D)$ denotes the image of D under the rigid motion σ . Balls do not have the Pompeiu property. The conjecture of [10, page 185] remains open, that among bounded open sets of \mathbb{R}^n whose boundary is homeomorphic to the unit sphere of \mathbb{R}^n , only the balls fail to have the Pompeiu property.

The boundary of any set W will be denoted by ∂W . The outer boundary of a bounded open $D \subseteq \mathbb{R}^n$ is that subset of ∂D which is in the closure of the unbounded (connected) component of $\mathbb{R}^n \sim \overline{D}$. It will be denoted by $\partial^* D$. The main result of this paper (stated in Theorem 4) is that if a bounded open $D \subseteq \mathbb{R}^n$ fails to have the Pompeiu property, if a corresponding number α (described in the next paragraph) is real, and if an (n-1)-dimensional portion of its outer boundary is Lipschitz, then that portion is (real) analytic. Theorem 1 states that if D fails to have the Pompeiu property and $\partial^* D = \partial D$, then α is real. One consequence of these theorems is that if a bounded open set $D \subseteq \mathbb{R}^n$ has boundary ∂D homeomorphic to the unit sphere in \mathbb{R}^n , if D fails to have the Pompeiu property, and if ∂D is Lipschitz, then ∂D is analytic. This is evidence in support of the conjecture described above. Another consequence of these theorems is that if any convex open $D \subseteq \mathbb{R}^n$ fails to have the Pompeiu property, then ∂D is analytic.

It is proved in [10] (from a result in [11]) that if D fails to have the Pompeiu property then there is at least one $\alpha \in \mathbb{C}$ with $\alpha \neq 0$ and a distribution T of compact support on \mathbb{R}^n such that $\Delta T + \alpha T = -\chi_D$ in the distribution sense. (Here and for the rest of the paper, for any set W, χ_W denotes the characteristic function of W.) It is also proved in [10] that this distribution