Isometries on Subspaces of L^p

CLYDE D. HARDIN, Jr.

Section 0. Introduction. In this paper, we determine the structure of isometric linear operators defined on subspaces of L^p , p>0 and not an even integer. The main tool is a generalization of a theorem of Rudin on L^p isometries and equimeasurability. Our structure results imply that these isometries admit natural (and unique) extensions to isometries defined on explicitly described and potentially much larger subspaces.

In his classic monograph [2], Banach states a result characterizing the isometric linear operators on $L^p[0,1]$, $1 \le p \ne 2$. His result is that U is an isometry of $L^p[0,1]$ onto itself if and only if there is a one-to-one non-singular measurable map ϕ of [0,1] onto itself and a measurable function h with $|h|^p = d(m \cdot \phi^{-1})/dm$ a.e. (where m denotes Lebesgue measure) such that

(1)
$$Uf(x) = h(x)f(\phi^{-1}(x))$$
 a.e.

Hence, for $p \neq 2$, L^p isometries are essentially given by such maps ϕ .

Lamperti [4] has proved a generalization of this result to the case $0 , <math>\mu$ is a σ -finite measure on X, and $U: L^p(X,\mu) \to L^p(X,\mu)$ is a (not necessarily onto) linear isometry. Here the space $L^p(X,\mu)$ may be taken real or complex. For Lamperti's result, the point map ϕ must be replaced with a set map—a so-called regular set isomorphism (see Definition 2.1).

Note that if the isometry U of (1) maps the constant function 1 onto itself, then $h(x) \equiv 1$ a.e. and ϕ is measure preserving. This forces every pair of vectors $(f_1, ..., f_n)$ and $(Uf_1, ..., Uf_n)$ to be equimeasurable, i.e. $m\{(f_1, ..., f_n) \in B\} = m\{(Uf_1, ..., Uf_n) \in B\}$ for all Borel sets B in either \mathbb{R}^n or \mathbb{C}^n (according as $L^p[0,1]$ is taken to be a real or complex vector space).

Rudin [7] has proved that this equimeasurability property holds for isometries preserving 1 which are defined on subspaces of complex L^p :

Theorem 0.1. (Rudin [7]). Let μ and ν be finite measures on X and Y, respectively, and let $f_1, ..., f_n \in L^p(X,\mu)$ and $g_1, ..., g_n \in L^p(Y,\nu)$ be complex-valued functions such that

$$\int_{X} \left| 1 + \sum_{i} \lambda_{j} f_{j} \right|^{p} d\mu = \int_{Y} \left| 1 + \sum_{i} \lambda_{j} g_{j} \right|^{p} d\nu$$

for all choices of complex numbers $\lambda_1, ..., \lambda_n$. If 0 and p is not