Hopf Algebras and Galois Extensions of an Algebra

H. F. KREIMER & M. TAKEUCHI

Introduction. Let R be a given commutative ring with identity element 1, and let J be a given Hopf algebra over R which is a finitely generated, projective R-module. Conditions under which an R-algebra B may be called a J-Galois extension of a subalgebra A are investigated in the first part of this paper. These conditions seem modestly restrictive, and in the case of a commutative algebra B they appear to be weaker than conditions imposed by S. G. Chase and G. Sweedler in their definition of a commutative Galois G-algebra G. But the structure of a Hopf algebra is used to derive various properties of a G-Galois extension. For example a G-Galois extension of an G-algebra G-algebra G-Galois extension of an G-Galois extension as defined bere.

In the second part of the paper, the concept of a normal basis for a J-Galois extension is introduced and explored. A simple criterion for the existence of a normal basis when the kernel of the augmentation or counit map of the dual Hopf algebra J^* is contained in the Jacobson radical of J^* is developed; and applications to p-groups of automorphisms, derivations, and higher derivations of an algebra over a ring of prime characteristic p are given.

The following notation and elementary facts will be used throughout this paper. For any object X in a category, let the identity morphism for X also be denoted by the symbol X. An R-module will always be assumed to be unital, and the symbols \otimes and Hom will denote respectively tensor product and group of module homomorphisms for pairs of R-modules unless some other module structure is indicated by subscripts. For R-modules X and Y, T will denote the R-module isomorphism of $X \otimes Y$ onto $Y \otimes X$ such that $T(x \otimes y) = y \otimes x$ for x in X and y in Y, and X^* will denote the dual module Hom(X,R). If $x \in X$ and $\phi \in X^*$, let $\langle \phi, x \rangle$ denote the value of ϕ at x; and if f is an R-module homomorphism of X into Y, let f^* denote the adjoint map of Y^* into X^* . If X is a finitely generated, projective R-module; then so is X^* , and there are natural isomorphisms by which X may be identified with X^{**} and $X^* \otimes Y^*$ may be identified with $(X \otimes Y)^*$. Moreover elements y and y of y are equal if and only if y and y and y of y are equal if and only if y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y are equal if and only if y and y and y and y and y and y are equal if and only if y and y and y and y and y and y are equal if and only if y and y and y and y and y and y are equal if and only if y and y are equal if and only if y and y and