Integral Operators and Changes of Density

LUTZ WEIS

1. Introduction. In [10] W. B. Johnson and L. Jones observe that after an appropriate change of density every continuous linear operator $T:L_1(\Omega,\mu)\to L_1(\Omega,\mu)$ is an L_q -operator for all $1\leq q\leq \infty$, i.e. there is a $g\in L_1(\Omega,\mu)$ such that $\rho T \rho^{-1}:L_q(\Omega,\mu g d\mu)\to L_q(\Omega,\mu g d\mu)$ for all $1\leq q\leq \infty$ where ρ is just a multiplication operator $\rho(f)=f\cdot g^{-1}$. In this paper I want to point out that a result of this kind is typical for positive operators and regular operators (i.e. differences of positive operators) and that it has interesting applications to integral operators. More precisely: By choosing an appropriate density we show in Section 2 that a linear operator $T:L_p(\Omega,\mu)\to L_p(\Omega,\mu)$ is regular if and only if there is a positive isometry J of $L_p(\Omega,\mu)$ such that $JTJ^{-1}:L_q(\Omega,\mu)\to L_q(\Omega,\mu)$ for all $1\leq q\leq \infty$. There is also a somewhat weaker Banach lattice version of this result: If T is regular in a Banach lattice X then (under mild assumptions on X) there is a representation \tilde{X} of X as a space of measurable functions on some measure space (Ω,μ) so that in this representation $\tilde{T}:L_q(\Omega,\mu)\to L_q(\Omega,\mu)$ for all $1\leq q\leq \infty$.

The remainder of the paper gives applications to integral operators, i.e. operators K defined on an ideal X of measurable functions on (Ω, μ) with a representation

$$Kf(s) = \int_{\Omega} K(s,t)f(t)d\mu(t)$$
, a.e.

where we only assume that k is measurable on $\Omega \times \Omega$ and k(s, f) is integrable for μ -almost all $s \in \Omega$ and all $f \in X$. Generally speaking, one can use the change of density technique in order to reduce problems in the general situation to the better known case where $X = L_{\infty}(\Omega, \mu)$ or $X = L_{1}(\Omega, \mu)$. In this way we give new proofs to characterizations of integral operators due to A. Bukhvalov [3] and W. Schachermayer [18] by reducing their results to a classical theorem of Dunford and Pettis. This provides a more analytical proof of the theorem of Bukhvalov who had used the framework of lattice theory in his original paper, and we get a generalization of Schachermayer's result who had restricted himself to the case $X = L_{n}(\Omega, \mu)$. (See Section 3.)

In Sections 4 and 5 we are concerned with compactness properties of integral operators, the basic result being that an integral operator $K: L_p \to L_p$ has "large" compact restrictions $\chi_E K$. This property actually characterizes the norm closure of the set of integral operators in $B(L_p(\Omega, \mu))$ (see 4.4.) and this answers a question