The Operator M_z on Hilbert Spaces of Analytic Functions

BRIAN J. SHELBURNE

I. Introduction. Let Ω be an open, bounded, connected subset of the complex plane whose complement consists of a finite number of simply connected sets with non-empty interiors. Let $\mathfrak{A}^2(\Omega)$ be the Hilbert space of functions analytic and square integrable over Ω . The operator M_z , multiplication by z, is defined and bounded on $\mathfrak{A}^2(\Omega)$. This paper concerns itself with showing the action of M_z on $\mathfrak{A}^2(\Omega)$ where Ω is other than a simple disk or annulus.

First it is shown that $\mathfrak{A}^2(\Omega)$ can be decomposed into a finite sum of submanifolds by a set of bounded projections with each projection depending on a component in the complement of Ω . Each such submanifold is 'suspended' between two weighted ℓ_2 spaces by bounded, one-to-one, compact, linear transformations. This is extended to suspend $\mathfrak{A}^2(\Omega)$ between two direct sums of weighted ℓ_2 spaces. Finally, an operator Σ called the multi-fork shift is defined on both direct sums of weighted ℓ_2 spaces and it is shown by a commuting diagram how M_z on $\mathfrak{A}^2(\Omega)$ is related to Σ .

The easiest way to show that $\mathfrak{A}^2(\Omega)$ is a Hilbert space is to start with $\mathcal{L}^2(\Omega)$, the Hilbert space of functions measurable and square integrable over Ω , whose norm is denoted by $\| \ \|_{\Omega}$. Define $\mathfrak{A}^2(\Omega)$ as the subspace of functions analytic over Ω and claim $\mathfrak{A}^2(\Omega)$ is closed.

Lemma 1.1. Let $f \in \mathfrak{A}^2(\Omega)$. If r > 0 is the distance between a fixed $z \in \Omega$ and the boundary of Ω , then

$$|f(z)| \le ||f||_{\Omega}/\sqrt{\pi} \cdot r.$$

The proof is found in Epstein [5, page 2]. It follows from this lemma that every function $f \in \mathfrak{A}^2(\Omega)$ is bounded on closed subsets contained in Ω . Therefore any Cauchy sequence (in the $\mathscr{L}^2(\Omega)$ norm) of functions in $\mathfrak{A}^2(\Omega)$ converges uniformly on all closed subsets contained in Ω , hence to a function analytic over Ω . This in turn shows $\mathfrak{A}^2(\Omega)$ to be a closed manifold in $\mathscr{L}^2(\Omega)$ and thus a Hilbert space. The complete proof is found in Epstein [5, pages 2–6].

The space $\mathfrak{A}^2(\Omega)$ is relevant to a number of areas of research. It appears in the work done in the area of conformal mappings and the reproducing kernel functions (see Bergmann [2] and Epstein [5]) as well as in some work done in approximation