A Counter Example for Weiner's Open Question

NORIO EJIRI

0. Introduction. Let $f: M \to M'$ be an isometric immersion of an orientable surface M in an n-dimensional Riemannian manifold M'. We denote by H and R' the mean curvature of f and the sectional curvature of M' with respect to the tangent space of M. Then we define $\tau(f)$ by

(1)
$$\tau(f) = \int_{M} (H^{2} + R') *l,$$

where *l is the volume element of M. In [1], B. Y. Chen shows that τ is an invariant under conformal changes of the metric \langle , \rangle of M'. The variation of τ is calculated in [2]. When M' is a space form, f is a stationary point of τ if and only if

$$\Delta \mathbf{H} - 2H^2 \mathbf{H} + A(\mathbf{H}) = 0,$$

where Δ is the Laplacian with respect to the normal connection, **H** is the mean curvature vector and A is a field of endomorphisms of normal spaces defined in terms of the second fundamental form σ of the immersion f and an orthonormal frame e_1 , e_2 of M by

$$A(N) = \sum_{i,i=1}^{2} \langle N, \sigma(e_i, e_j) \rangle \, \sigma(e_i, e_j).$$

For stationary immersions in an n-dimensional unit sphere S^n , Weiner gives the following open question in [2].

Question. Are the only closed orientable immersed surfaces in S^n whose centroids are 0 and which satisfy

$$\Delta \mathbf{H} - 2H^2 \mathbf{H} + A(\mathbf{H}) = 0$$

minimal surfaces in S^n ?

The centroid of an immersion $f: M \to S^n \subset R^{n+1}$ is the vector of R^{n+1} defined by