Existence and Multiplicity Theorems for Semilinear Elliptic Equations with Nonlinear Boundary Conditions

FRIEDHELM INKMANN

1. Notation and statement of the results. In this paper we are looking for solutions of the semilinear elliptic boundary value problem

(BP)
$$\begin{cases} Au = f(x, u, Du) & \text{in } \Omega \\ Bu = g(x, u) & \text{on } \partial \Omega. \end{cases}$$

Here, Ω will denote a bounded domain of class C^2 in \mathbb{R}^N , $N \ge 2$, i.e. the boundary $\partial \Omega$ is a C^2 -manifold of dimension N-1 such that Ω lies locally on one side of $\partial \Omega$. By A we mean the differential operator

(1.1)
$$Au = -\sum_{j,k=1}^{N} a_{jk}(x) D_{j}D_{k}u,$$

where $a_{jk}=a_{kj}\in C(\bar\Omega)$ and A is uniformly strongly elliptic, i.e. there exists some constant $\mu>0$ with $\sum_{j,k=1}^N a_{jk}(x)\xi^j\xi^k\geq \mu|\xi|^2$ for all $x\in\bar\Omega$ and $\xi\in\mathbf R^N$.

The boundary operator B is defined by

$$Bu = \frac{\partial u}{\partial \beta},$$

where $\beta \in C^1(\partial\Omega, \mathbf{R}^N)$ is an outward pointing, nowhere tangent vector field on $\partial\Omega$.

For the nonlinearities f and g we suppose throughout this paper

(f1)
$$\begin{cases} f: \bar{\Omega} \times \mathbf{R} \times \mathbf{R}^N \to \mathbf{R} \text{ is continous and } \partial f/\partial \xi, \, \partial f/\partial \eta \\ \text{exist and are continous, too. } ((x, \xi, \eta) \text{ denotes a} \\ \text{generic point of } \bar{\Omega} \times \mathbf{R} \times \mathbf{R}^N.) \end{cases}$$

(f2)
$$\begin{cases} \text{There is an increasing function } c: \mathbf{R}_+ \to \mathbf{R}_+ \text{ such that} \\ |f(x,\xi,\eta)| \le c(|\xi|) \ (1+|\eta|^2) \text{ for all } (x,\xi,\eta) \in \bar{\Omega} \times \mathbf{R} \times \mathbf{R}^N. \end{cases}$$

(g)
$$g: \partial \Omega \times \mathbf{R} \to \mathbf{R}$$
 is locally Lipschitz continuous.