A Semilinear Reaction-Diffusion Prey-Predator System with Nonlinear Coupled Boundary Conditions: Equilibrium and Stability

ANTHONY LEUNG

1. Introduction and preliminaries. The reaction-diffusion equation for prey-predator interaction:

(1.1)
$$\frac{\partial u_1}{\partial t} = \sigma_1 \Delta u_1 + u_1 [a + f_1(u_1, u_2)]$$

$$\frac{\partial u_2}{\partial t} = \sigma_2 \Delta u_2 + u_2 [-r + f_2(u_1, u_2)]$$

will be studied, where $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$, a, r, σ_1 , σ_2 are positive constants, $f_i: R^2 \to R$ have Hölder continuous partial derivatives up to a second order in compact sets, i = 1, 2. Further, we assume that

(1.2)
$$f_i(0,0) = 0, \qquad i = 1, 2;$$

$$\frac{\partial f_1}{\partial u_1} < 0, \qquad \frac{\partial f_1}{\partial u_2} < 0, \qquad \frac{\partial f_2}{\partial u_1} > 0, \qquad \frac{\partial f_2}{\partial u_2} < 0$$

for (u_1, u_2) in the first open quadrant, and for each $m \ge 0$

(1.3)
$$\lim_{u_2 \to +\infty} f_2(m, u_2) = -\infty$$
, $\lim_{u_1 \to +\infty} f_2(u_1, m) = +\infty$, $\lim_{u_1 \to +\infty} f_1(u_1, 0) = -\infty$.

The functions $u_1(x,t)$, $u_2(x,t)$ respectively represent the density of prey and predator at position $x=(x_1,\ldots,x_n)$ and time $t\geq 0$. The parameters σ_1 , σ_2 are diffusion rates; a and r are growth and mortality rates of the prey and predator in the event that no interaction involves between them. f_1 , f_2 describe further interactions, and (1.2), (1.3) are general assumptions which include the modified Volterra-Lotka model with crowding effects. The problem of existence of solu-