Entire Functions of Operators

R. L. MOORE

Let T be a bounded operator on a separable infinite-dimensional Hilbert space.
In [2], P. R. Halmos observed that if f is an entire function and if f(7T") = 0, then
there is a polynomial p such that p(T') = 0. Later, P. Fillmore [1], in the course
of a discussion of invariant operator ranges, showed by an ingenious argument
that if there is an entire function f for which T* = f(T'), then for some polynomial
p, T* = p(T). A fusion of these results would say that if aT* + b, for complex
a and b, is an entire function of 7, then it is in fact a polynomial function of 7.

This formulation suggests the possibility of replacing aT™* + b by other polyno-
mials in T*.

Theorem 1. Suppose that p is a polynomial, f is an entire function, and
p(T*) = f(T). Then there is a polynomial q such that p(T*) = q(T).

The proof will require two intermediate results: first, a general theorem con-
cerning expansion of entire functions in terms of polynomials; second, a fact about
the replacement of the operator equation p(T*) = f(T') by the complex equation
p(Z2) = f(z) for z in the spectrum of T.

I. An expansion theorem. If f is an entire function, then a standard (and fre-
quently useful) fact is that f(z) can be written as a combination of z and functions

of 22 : f(z) = 2 az' = 2 2"+zz az,mz = f(2") + zf\()), where

n=0
f, and f; are entire functions. Equally easily, f can be written in terms of z, z°,
and functions of 2° : f(z) = g(z°) + 2zg,(z>) + Z°g,(2°). It is far from obvious that
a similar expansion of f is possible in terms of functions of polynomials that are
not monomials.

Theorem 2. Let f be an entire function and let p be a polynomial of degree k.

There exist entire function g,, 8, ..., 8., Such that
f@) = g(p@) + 28:(P@) + ... + 27 'gi1(p(2).

Proof. It does no harm to assume that p is monic, say p(z) = Z* +
a,_,Z2"+ ... + a;z + a,. Consider first the case f(z) = z". If n = 0, there is
no dlfflculty set g(°) (w) = 1 and g (w) = 0 for j # 0. For each n, define func-
tions g, j = 0, 1, ..., k — 1, recursively as follows:
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