Lipschitz Conditions and Quasiconformal Mappings

RAIMO NÄKKI & BRUCE PALKA

1. Introduction. A mapping f of a set A in euclidean n-space R^n into R^n is said to be Hölder continuous with exponent α , $0 < \alpha \le 1$, at a point x in A if there is a number M such that

$$|f(y) - f(x)| \le M|y - x|^{\alpha}$$

for all y in A. Should (1) hold, with fixed M and α , for all points x and y in A, we will say that f is uniformly Hölder continuous with exponent α in A or that f belongs to the Lipschitz class with exponent α in A. We use the notation $\text{Lip}_{\alpha}(A)$ to designate this class.

Let D and D' be bounded domains in R^n and let f be a quasiconformal mapping of D onto D'. It is well known that f belongs to $\operatorname{Lip}_{\alpha}(A)$ for each compact subset A of D with $\alpha = K_I(f)^{1/(1-n)}$, where $K_I(f)$ denotes the inner dilatation of f. In the plane this fact was demonstrated by Ahlfors [1] and by Mori [20]; the result was later extended to higher dimensions independently by Callender [4], by Gehring [9] and by Rešetnjak [29]. In general, however, f need not belong to $\operatorname{Lip}_{\alpha}(D)$ for any α , even if f is continuous up to the boundary of f. It is our purpose in this paper to establish criteria which permit one to infer that f belongs to some global Lipschitz class in f. For example, we show that if f admits an extension to a continuous mapping of f and if the Hölder condition (1) is satisfied for all points f in f and f in f belongs to f for f in f and f in f belongs to f for f in f and f in f and f in f belongs to f for f in f belongs to f for f in f and f in f and f in f belongs to f for f in f and f and f in f belongs to f for f in f belongs to f for f in f belongs to f for f in f in f belongs to f for f in f in f belongs to f for f in f in f belongs to f for f in f the f belongs to f for f in f for f in f

Particular attention will be focused on the case where either D or D' is the unit ball B^n . In this situation it should be observed that, if some quasiconformal mapping of D onto D' is uniformly Hölder continuous in D, then each such mapping enjoys the same property. This assertion follows easily from the fact that a quasiconformal self-mapping of B^n is uniformly Hölder continuous. It is not surprising, therefore, that in this setting criteria for uniform Hölder continuity reflect the intrinsic geometric properties of D or D'.

We consider first a quasiconformal mapping f of B^n onto a bounded domain D and exhibit geometric conditions on D which are sufficient to insure that f belongs to $\operatorname{Lip}_{\alpha}(B^n)$ for some α . For example, given a cross-set S of D dividing D into two subdomains, we let $D^*(S)$ denote the component of $D \setminus S$ of smaller diameter