Necessary Conditions for Hankel Multipliers

GEORGE GASPER & WALTER TREBELS

1. Introduction. Fix $\alpha > -1/2$ and let $L^{p,\mu} = L^{p,\mu}_{\alpha}(0,\infty)$, $\mu \in \mathbb{R}$, $1 \le p < \infty$, be the set of Lebesgue measurable functions with finite norm

$$||f||_{p,\mu} = \left(\int_0^\infty |t^\mu f(t)|^p t^{2\alpha+1} dt\right)^{1/p}.$$

When $\mu=0$ we write $L^{p,0}=L^p$ and $\|\cdot\|_{p,0}=\|\cdot\|_p$. For $f\in L^1$ we define the modified [8] Hankel transform of order α by

(1.1)
$$\mathcal{H}_{\alpha}(f)(\rho) \equiv f^{\hat{}}(\rho) := \int_{0}^{\infty} f(t) \, \mathcal{J}_{\alpha}(\rho t) \, t^{2\alpha+1} \, dt,$$

where $\mathcal{J}_{\alpha}(t) = t^{-\alpha}J_{\alpha}(t)$, J_{α} being the Bessel function of the first kind. It is well known [11], [12], [14, page 176], [16] that the Hankel transform of an L^p -function satisfies certain differentiability and/or Lipschitz conditions. The purposes of this paper are

i) to sharpen these results by deriving an appropriate analog of the classical Hausdorff-Young inequality (1/p + 1/p' = 1)

(1.2)
$$\|\mathcal{H}_{\alpha}(f)\|_{p'} \leq C\|f\|_{p} \qquad (f \in L^{p}, 1 \leq p \leq 2),$$

and then

ii) to deduce necessary multiplier conditions by proceeding analogously to [17].

To establish an analog of (1.2) containing smoothness properties of $\mathcal{H}_{\alpha}(f)$ we need suitable $(L^{1,\mu_1},L^{\infty,\mu_2})$ and $(L^{2,\mu_3},L^{2,\mu_4})$ estimates on certain well-behaved subsets dense in $L_{\alpha}^{p,\mu}$, $1 \leq p \leq 2$, for all μ such that $\mu p + 2\alpha + 2 > 0$, so that we can apply the Riesz-Thorin interpolation theorem. Let us first describe these subsets $S_0(k)$: for $k \in \mathbb{N} = \{1,2,\ldots\}$ a continuous function on $[0,\infty)$ is said to belong to $S_0(k)$ if it satisfies the following properties

- i) it is rapidly decreasing,
- ii) it is infinitely differentiable away from the origin and,
- iii) $\mathcal{H}_{\lambda}(f)$ has compact support in $[0,\infty)$ for all $\lambda \in (-1/2,k]$.

Lemma 1. If $1 \le p \le 2$, $\mu p + 2\alpha + 2 > 0$ and $k \in \mathbb{N}$, then $S_0(k)$ is dense in $L^{p,\mu}$.