Maximal Invariant Spaces of Analytic Functions

RICHARD M. TIMONEY

Let $H(\mathfrak{D})$ denote the topological vector space of holomorphic functions on a bounded symmetric domain \mathfrak{D} in \mathbb{C}^m . The topology on $H(\mathfrak{D})$ is the topology of uniform convergence on compact sets. Aut(\mathfrak{D}) denotes the group of biholomorphic mappings of \mathfrak{D} onto \mathfrak{D} . For the case of irreducible domains \mathfrak{D} , the main result is the following one.

Theorem 0.1. Let \mathfrak{D} be irreducible. If $L \neq 0$ is a continuous linear functional on $H(\mathfrak{D})$ and $f \in H(\mathfrak{D})$ satisfies

$$\sup \{|L(f \circ \phi)| : \phi \in \operatorname{Aut}(\mathfrak{D})\} = M < \infty,$$

then f is a Bloch function [7] on $\mathfrak D$ and the Bloch seminorm $||f||_{\mathfrak R}$ of f is at most $c_L M$ where c_L is a constant depending only on L.

Bloch functions on $\mathfrak D$ will be defined later. We will also give a corresponding theorem for the reducible case. The following is an immediate consequence of Theorem 0.1.

Corollary 0.2. Let \mathfrak{D} be irreducible. Then the only $Aut(\mathfrak{D})$ -invariant closed linear subspaces of $H(\mathfrak{D})$ are $\{0\}$, the constant functions and $H(\mathfrak{D})$.

Now let $(X, \|\cdot\|_X)$ denote a linear space X of analytic functions on \mathfrak{D} equipped with a seminorm $\|\cdot\|_X$. The space $(X, \|\cdot\|_X)$ is called $\operatorname{Aut}(\mathfrak{D})$ -invariant (or just invariant) if, whenever $f \in X$ and $\varphi \in \operatorname{Aut}(\mathfrak{D})$, then $f \circ \varphi \in X$ and $\|f \circ \varphi\|_X = \|f\|_X$. A non-zero linear functional on X is called "decent" if it is continuous with respect to $\|\cdot\|_X$ and it extends to a continuous linear functional on $H(\mathfrak{D})$. The following is actually equivalent to Theorem 0.1.

Theorem 0.3. Let \mathfrak{D} be irreducible. Let $(X, \|\cdot\|_X)$ be an $\operatorname{Aut}(\mathfrak{D})$ -invariant seminormed space of analytic functions on \mathfrak{D} . Suppose $(X, \|\cdot\|_X)$ possesses one (nonzero) decent linear functional. Then X is contained in the set $\mathfrak{B}(\mathfrak{D})$ of Bloch functions on \mathfrak{D} and the inclusion mapping from $(X, \|\cdot\|_X)$ to $(\mathfrak{B}(\mathfrak{D}), \|\cdot\|_{\mathfrak{B}})$ is continuous.

For the case $\mathfrak{D} = D$ = the unit disc in \mathbb{C} , Theorem 0.3 and Corollary 0.2 were proved in [5]. Examples were given there of well-known spaces $(X, \|\cdot\|_X)$ satisfying the hypotheses of Theorem 0.3 and also of a space failing to satisfy both