A Minimization Problem and the Regularity of Solutions in the Presence of a Free Boundary

DANIEL PHILLIPS

Introduction. The purpose of this paper is to obtain a sharp interior regularity estimate for a function u(x) satisfying:

$$J(u) = \int_{G} \left(\frac{|\nabla u|^2}{2} + u^{\gamma} \right) dx = \min_{w \in \mathbf{K}} J(w), \qquad u \in \mathbf{K}.$$

Here γ is a fixed constant with $0 < \gamma < 1$, G is an open bounded set in \mathbb{R}^n with ∂G locally a Lipschitz graph, and $\mathbb{K} = \{w : w \in H^1(G), w \ge 0, w = u_0|_{\partial G}\}$ where u_0 is a fixed element in $H^1(G)$ with $u_0 \ge 0$.

To be precise we will delineate a particular representative u(x), and show that for each compact subset $H \subset G$, $u(x) \in C^{1,\beta-1}(H)$ with $\beta = 2/(2-\gamma)$.

Moreover we shall see that u(x) will be a solution to the following free boundary problem:

(0.1)
$$\Delta u = \gamma u^{\gamma - 1} & \text{in } \{x : u(x) > 0\} \\ u = 0, \nabla u = 0 & \text{on } \partial\{u > 0\} - \partial G, \\ u = u_0 & \text{on } \partial G.$$

Two similar minimization problems (each with an associated free boundary problem) have recently been studied by H. Alt and L. Caffarelli.

In [5] u(x) were considered that satisfied:

$$J^{1}(u) = \int_{G} (|\nabla u|^{2} + u) dx = \min_{w \in \mathbf{K}} J^{1}(w), \qquad u \in \mathbf{K},$$

where **K** is defined as above.

In [1] u(x) were considered that satisfied:

$$J^{0}(u) = \int_{G} (|\nabla u|^{2} + \chi_{\{u>0\}}) dx = \min_{w \in \mathbf{K}} J^{0}(w), \qquad u \in \mathbf{K},$$

again with **K** as above, where $\chi_{\{u>0\}}$ represents the characteristic function of $\{x: u(x) > 0\}$.