On the Regularity of Boundaries of Sets Minimizing Perimeter with a Volume Constraint

E. GONZALEZ, U. MASSARI & I. TAMANINI

Introduction

The regularity of the reduced boundary $\partial^* E$ of a set E, minimizing perimeter in an open set $\Omega \subset \mathbf{R}^n$ ($n \ge 2$), was proved by E. De Giorgi in 1960 (see [4] or [6]); later, M. Miranda [18] obtained the following estimate on the measure of the singular points: $H_{n-1}[(\partial E - \partial^* E) \cap \Omega] = 0$. This result was then improved by H. Federer [8], who showed that actually $H_s[(\partial E - \partial^* E) \cap \Omega] = 0$, for every real s > n - 8; this is the best result one may expect, in view of the well-known example of the "Simons cone" which is area-minimizing in \mathbf{R}^8 but singular at x = 0 (see [3]). Analogous results were obtained by U. Massari for boundaries of sets having prescribed mean curvature in Ω , using essentially the same method as in De Giorgi's paper (see [17]).

The constraint usually imposed on the solution E is some kind of boundary condition on $\partial\Omega$, which does not affect its interior regularity. However, it appears appropriate for several applications to impose on the solution a volume constraint, too; the first example in this direction is the *isoperimetric problem*: to find a set with minimal perimeter and a given volume. As everybody knows, in this case the solution can be found explicitly (see e.g. [5] and [13]), so that any question about its regularity is actually superfluous.

Further examples of minima of area-like functionals, subject to volume constraints, are often encountered in the field of Capillarity Theory: liquid drops, resting on or hanging from a given surface, are the simplest ones among them. They have recently been studied by the authors in [14], [15] and [16], in the case of a horizontal plane as supporting surface. One knows that in this case the solution is axially symmetric [14], so that its boundary can be locally described (except perhaps near points lying on the axis of symmetry itself) as a graph of a suitable function, which turns out to solve a similar problem.

Now, it is well known (see [9] and [10]) that if a function $f \in BV(\Omega)$ minimizes an area-like functional J(f), with the constraints $f \ge \psi$ in Ω and $\int_{\Omega} (f - \psi) dx = v$ (ψ and v given), then there exists a multiplier $\lambda \in \mathbf{R}$ such that f min-