An Extension of Alexander's Theorem on Proper Self Mappings of the Ball in \mathbb{C}^n

STEVEN R. BELL

H. Alexander [1] proved that proper holomorphic self mappings of the unit ball in \mathbb{C}^n with n > 1 are automorphisms. It is proved herein that a proper mapping of a bounded strictly pseudoconvex domain with real analytic boundary onto a smooth bounded Reinhardt domain must be biholomorphic. The new approach to this problem provides a simple and elementary proof of Alexander's original theorem.

Let D_1 be a smooth bounded strictly pseudoconvex domain with real analytic boundary and let D_2 be a smooth bounded pseudoconvex complete Reinhardt domain, both contained in \mathbb{C}^n . Suppose that f is a proper holomorphic mapping of D_1 onto D_2 . We shall prove that f is actually biholomorphic and that f extends to be a biholomorphic mapping between two larger domains G_1 and G_2 containing \bar{D}_1 and \bar{D}_2 , respectively. From this, it follows that D_2 must also be a strictly pseudoconvex domain with real analytic boundary.

The key ingredients of the proof of this result are:

- **Fact 1.** Let P_1 denote the Bergman orthogonal projection of $L^2(D_1)$ onto its subspace of holomorphic functions. If $\phi \in C_0^{\infty}(D_1)$, then $P_1\phi$ extends to be holomorphic in a neighborhood of \bar{D}_1 .
- **Fact 2.** Let P_2 denote the Bergman projection associated to D_2 . For each monomial z^{α} , there is a function ϕ_{α} in $C_0^{\infty}(D_2)$ such that $P_2\phi_{\alpha}=z^{\alpha}$.
- **Fact 3.** Let u = Det[f']. If $\phi \in L^2(D_2)$, then $u \cdot (\phi \circ f) \in L^2(D_1)$ and $P_1(u \cdot (\phi \circ f)) = u \cdot ((P_2 \phi) \circ f)$.
- Fact 3 is proved in [2], [3]. Fact 1 is a direct consequence of the analytic hypoellipticity of the $\bar{\partial}$ -Neumann operator on strictly pseudoconvex domains with real analytic boundary (Tartakoff [7], Trèves [8]) and Kohn's formula $P_1 = I \bar{\partial} * N\bar{\partial}$ which relates P_1 to the $\bar{\partial}$ -Neumann operator N for D_1 .

Fact 2 is a simple consequence of the formula

$$\langle h, z^{\alpha} \rangle_{L^{2}(D_{2})} = c_{\alpha} \frac{\partial^{\alpha} h}{\partial z^{\alpha}} (0)$$

which holds in complete Reinhardt domains because the monomials form a com-