On the Peak Sets for Holomorphic Lipschitz Functions

JOAOUIM BRUNA

I. Introduction and notations. Let D denote the open unit disc in the complex plane and let T be its boundary. For $0 < \alpha \le 1$, Lip α will denote the algebra of complex-valued functions f analytic on D, continuous on \bar{D} and satisfying a Lipschitz condition of order α on \bar{D} :

$$|f(z) - f(w)| \le K|z - w|^{\alpha}, \quad z, w \in \overline{D}.$$

A closed set $E \subset T$ is said to be a *peak set* for Lip α if there exists $f \in \text{Lip } \alpha$ such that f = 1 on E and |f| < 1 on $\overline{D} \setminus E$ (and in this case we say that f peaks on E).

In [9], W. P. Novinger and D. M. Oberlin studied the peak sets for Lip α . They showed that the peak sets for Lip 1 are just the finite sets. Moreover, if (ε_n) is the sequence of lengths of the complementary intervals of E in T, they proved that

(1)
$$|E| = 0, \qquad \sum_{n} \varepsilon_n^{(1-\alpha)/(3-\alpha)} < +\infty,$$

is a sufficient condition and that

(2)
$$|E| = 0, \qquad \sum_{n} \varepsilon_{n}^{1-\alpha} |\log \varepsilon_{n}|^{-\delta} < +\infty, \qquad \delta > 1$$

is a necessary condition for E being a peak set for Lip α . They also conjectured that

(3)
$$|E| = 0, \qquad \sum_{n} \varepsilon_{n}^{1-\alpha} < +\infty$$

is a necessary and sufficient condition. If $\rho(z)$ denotes the Euclidean distance from z to E, we note that (3) means that $\rho^{-\alpha} \in L^1(T)$, whereas (1) means that $\rho^{-2/(3-\alpha)} \in L^1(T)$.

In this paper we continue this study and we offer some necessary conditions and some sufficient conditions which are very close to the conjecture. In particular, we show (Theorem 2.7) that $\rho^{-\alpha} \in L^{1+\delta}(T)$ for some $\delta > 0$ is a sufficient