Bundles of Low Codimension over $\mathbb{C}P^n$

ROBERT M. SWITZER

We consider complex *n*-plane bundles ξ over *n*-dimensional complex projective space $\mathbb{C}P^n$. Our object is to prove that if $c_{n-s+1}(\xi) = \ldots = c_n(\xi) = 0$, then ξ has s cross-sections which are linearly independent over the complex numbers provided $s \leq \rho(n-s)$. Here $\rho(k)$ is an appropriate function for which we do not claim that it is best possible but merely that it is better than the previously published results in this direction.

Since *n*-bundles over $\mathbb{C}P^n$ are stable and since integers c_1, \ldots, c_n are the Chern classes of a stable bundle $\xi \downarrow \mathbb{C}P^n$ if and only if they satisfy a certain arithmetic condition S_n (cf. [2]), we may formulate our result as follows.

Theorem. Let c_1, \ldots, c_r be r integers satisfying the Riemann-Roch-Schwarzenberger condition S_n . Then there is an r-dimensional complex bundle $\zeta \downarrow \mathbb{C}P^n$ with Chern classes $c_i(\zeta) = c_i$, $1 \le i \le r$, provided $r \ge 3$ and $n \le r + \rho(r)$, where

$$\rho(r) = \begin{cases} 3 & \text{if} \quad r \equiv 0, 1 \mod 4 \\ 4 & \text{if} \quad r \equiv 2, 3 \mod 4. \end{cases}$$

Remarks. 1). The case r=1 is of course special: for any integer c_1 there is a line bundle $\lambda \downarrow \mathbb{C}P^n$ with $c_1\lambda=c_1$. For 2-bundles we have shown in [1] that there is a nontrivial obstruction to the existence of a 2-bundle $\zeta \downarrow \mathbb{C}P^5$ with given Chern classes c_1 , c_2 satisfying S_5 . The obstruction vanishes if c_1 is odd and for c_1 even it is equal to

$$\frac{\Delta^2(\Delta-1)}{24} \in \mathbf{Q}/\mathbf{Z}, \qquad \Delta = \frac{c_1^2 - 4c_2}{4}.$$

- 2). From [3] it follows that $\rho(r) \ge 2$ if r is odd.
- 3). By pushing the techniques used to prove the theorem above a bit further one can even prove for $r \ge 4$

$$\rho(r) = \begin{cases} 4 & \text{if} & r \equiv 0 \mod 4 \text{ unless } c_1 \text{ is even, } c_2 \text{ is odd} \\ & \text{or if} & r \equiv 1 \mod 4 \text{ unless } c_2 \text{ is odd} \end{cases}$$

$$5 & \text{if} & r \equiv 2 \mod 4 \text{ unless } c_1 \text{ is even or } \text{if} & r \equiv 3 \mod 4 \text{ unless } c_1^2 + c_2 \text{ is odd.}$$

381