A Defect Relation for Meromorphic Maps

ALDO BIANCOFIORE

Introduction. Let $f: \mathbb{C}^m \to \mathbb{P}_n$ be a meromorphic map. A well-known problem in value distribution theory is to find a good upper bound for $\sum \delta_f(D_j)$, where δ_f is the Nevanlinna defect and $\{D_j\}$ is any finite collection of hypersurfaces of degree d.

If $\{D_j\}$ are hyperplanes it has been found that $\sum \delta_j(D_j) \le n+1$, assuming f is not contained in any hyperplane of \mathbf{P}_n and $\{D_j\}$ are in general position (see Nevanlinna [8], Cartan [4], Ahlfors [1], Weyl [14], Stoll [11], Cowen-Griffiths [5], Vitter [13]).

For the general case we have the results of Carlson-Griffiths-King [3], [7] which imply $\sum \delta_f(D_j) \le (n+1)/d$, where $m \ge n = \operatorname{rank} f$ and where $\{D_j\}$ have normal crossings.

Therefore as a natural generalization of the case d=1, it has been conjectured (Griffiths [6], Shiffman [9]) that if $\{D_j\}$ have normal crossings and if the image of f is not contained in any hypersurface of \mathbf{P}_n , then $\sum \delta_f(D_j) \leq (n+1)/d$.

Until now, despite many attempts, the conjecture remains unresolved. However, some partial results have been obtained. For instance, Shiffman [10] established an upper bound of 2n for the defects sum of a particular class of nonconstant meromorphic maps, requiring the $\{D_j\}$ are such that no point of \mathbf{P}_n is contained in n+1 distinct D_j 's. Assuming $\{D_j\}$ with normal crossings, Biancofiore [2] obtained an upper bound of (n+1)/d for a class of algebraically nondegenerate meromorphic maps which essentially extends Shiffman's class.

In this paper, using the Veronese map, a defect relation is obtained for all meromorphic maps $f: \mathbb{C}^m \to \mathbb{P}_n$ which are not contained in any hypersurfaces of degree d. We assume f is transcendental and $\{D_j\}$ have normal crossings. Our result is

(1)
$$\sum \delta_f(D_j) \le n + 1 + \mu(f)$$

where $\mu(f)$ is an auxiliary defect which measures how far $\sum \delta_f(D_j)$ differs from n+1. We express $\mu(f)$ explicitly, which is basically a limit of the quotient of differences of order functions. We observe that $n+1+\mu(f)$ may well be less than $\binom{n+1}{d}$, the value expected from using the Veronese map. Moreover we