Bounded Orbits of Conjugation, Analytic Theory ## PAUL G. ROTH Introduction. Throughout the text, \mathcal{H} will signify a Hilbert space of generally unspecified dimension; separable will always be taken to mean countably infinite dimensional. \mathcal{B} (\mathcal{H}) will denote the collection of bounded linear operators on \mathcal{H} ; the term operator will connote bounded linear. \mathbf{C} will denote the complex field, and \mathbf{C}^* will denote $\mathbf{C}\setminus\{0\}$. \mathbf{R} will denote the reals, \mathbf{R}^+ the non-negative reals, \mathbf{Z} the integers and \mathbf{Z}^+ the non-negative integers. Also, we will frequently identify \mathbf{C} with the collection $\{\lambda I:\lambda\in\mathbf{C}\}$ where I is the identity operator on \mathcal{H} . That is, we will refer to λI as a scalar operator, or scalar, and write it more simply as λ . The context of this usage should preclude any confusion. The following definition is due to Deddens [1]. **Definition 0.1.** Let A be invertible in $\mathfrak{B}(\mathcal{H})$. $$\mathfrak{B}_A \stackrel{D}{=} \{X \in \mathfrak{B}(\mathcal{H}) : A^n X A^{-n} \text{ is uniformly norm bounded for } n \in \mathbf{Z}^+\}.$$ Thus, \mathfrak{B}_A is the collection of operators having bounded conjugation orbits, conjugation being by A. In the cited paper, an important connection is made: **Theorem 0.2.** (Deddens). Let $\mathcal H$ be separable. Let A be positive and invertible in $\mathfrak B(\mathcal H)$. Let μ denote the spectral measure of A, and let $\mathcal N$ denote the completion of the nest $$\{\mu[0,\varepsilon]\mathcal{H}:0\leq\varepsilon\}.$$ Let A_N denote the nest algebra of N; that is, the algebra $$\{X \in \mathfrak{B}(\mathcal{H}) : X\mathcal{G} \subset \mathcal{G} \text{ for } \mathcal{G} \in \mathcal{N}\}.$$ Then $\mathcal{A}_{\mathcal{N}} = \mathcal{B}_{A}$. Moreover, if \mathcal{N} is a complete nest of subspaces of \mathcal{H} , then $\mathcal{A}_{\mathcal{N}} = \mathcal{B}_{A}$ for some positive, invertible element A in $\mathfrak{B}(\mathcal{H})$. Thus, \mathfrak{B}_A was introduced as an alternative for the description of nest algebras; but the definition does have greater generality. If \mathcal{H} is finite dimensional, then \mathfrak{B}_A is completely determinable for any A invertible in $\mathfrak{B}(\mathcal{H})$ [6]. If \mathcal{H} is infinite dimensional, then no such statment can be made; however, one always has the following inclusions