Sets with the Weak Radon-Nikodym Property in Dual Banach Spaces ## LAWRENCE H. RIDDLE, ELIAS SAAB & J. J. UHL, JR. ## Dedicated to the memory of B. J. Pettis Shortly after the appearance of Rosenthal's signal theorem on spaces containing ℓ_1 , a number of additional characterizations of such spaces appeared. They are collected below. **Theorem.** Each of the following statements characterizes Banach spaces X that contain no copy of ℓ_1 . - (a) (Haydon). Every x^* in X^* is universally (weak*-)measurable and satisfies the barycentric formula on the unit ball of X^* equipped with the weak*-topology. - (b) (Pelczyński). Every bounded linear $T:L_1 \to X^*$ is a Dunford-Pettis operator. - (c) (Musial-Janika). The dual X^* has the Radon-Nikodym property for the Pettis integral. - (d) (Saab and Saab). The restriction of each x^* in X^* to each non-empty weak*-compact subset of X^* has a point of weak*-continuity. The main goal of this paper is to localize these theorems by showing that statements (a)–(d) above localize to provide equivalent conditions for absolutely convex weak*-compact subsets of dual spaces. By and large the work is based on an analogue of a factorization theorem of Stegall which shows, roughly, that weakly precompact sets are to sets with the weak Radon-Nikodym property as GSP sets are to sets with the Radon-Nikodym property. Included also is a new condition for universal Pettis integrability and special results for separable Banach spaces. **I.** Weakly pre-compact sets. Throughout this paper X and Y are real Banach spaces with duals X^* and Y^* respectively. The closed unit ball in X will be denoted by B_X . **Definition.** (a) A subset K of X is called weakly pre-compact if every bounded sequence in K has a weakly Cauchy subsequence. (b) We say that a bounded sequence (x_n) in X is a copy of the usual ℓ_1 -basis