Rotating Drops

S. ALBANO & E. H. A. GONZALEZ

1. Introduction. The global energy of a liquid drop E which rotates around its own barycenter with constant angular velocity $\sqrt{2\Omega}$ under the combined action of surface and kinetic forces may be written as

(1.1)
$$\mathscr{F}_{\Omega}(E) = \int_{\mathbb{R}^n} |D\varphi_E| - \Omega \int_E |y|^2 dy dz.$$

As usual, we have indicated with φ_E the characteristic function of the set $E \subset R^n$ and with $\int_A |D\varphi_E|$, A an open set in R^n , the total variation of the vector valued measure $D\varphi_E$ (see [12], [27]):

(1.2)
$$\int_A |D\varphi_E| = \sup \left\{ \int_E \operatorname{div} \psi(x) dx, \psi \in [C_0^1(A)]^n, |\psi| \le 1 \right\}.$$

We denote by x = (y,z), with $y \in R^{n-1}$ and $z \in R$, an arbitrary point in R^n . H_k indicates the k-dimensional Hausdorff measure, while

$$\omega_n = H_n(\{x \in \mathbb{R}^n : |x| \le 1\}).$$

By φ_E^+ and φ_E^- we shall denote respectively the inner and outer traces of E on the boundary ∂A of the open set $A \subset R^n$ (see [28]). If the inner and outer traces are equal, the common value of φ_E^+ and φ_E^- will be denoted by φ_E .

We study the energy functional (1.1) in the class $\mathscr E$ defined by

$$E \in \mathscr{E} \Leftrightarrow \begin{cases} H_n(E) = 1 \\ \int_E x_i dx = 0 & (i = 1, ..., n) \end{cases}$$

that is, among the sets E with prescribed volume and barycenter.

The energy functional being unbounded from below in such a class, we must look for a *local minimum* for \mathcal{F}_{Ω} . To this aim, we put

$$C_R = \{(y,z) \in R^n : |y| < R, |z| < R\}$$

and we call $E \in \mathscr{E}$ a local minimum (a rotating drop) for \mathscr{F}_{Ω} if there exists R > 0 such that

(i)
$$E \subset\subset C_R$$