Regularity of the Derivatives of Solutions to Certain Degenerate Elliptic Equations

JOHN L. LEWIS

Introduction. In this paper we show for fixed p, 1 , that if <math>u is a weak solution to $\nabla \cdot (|\nabla u|^{p-2}\nabla u) = 0$ in a bounded domain $D \subseteq \mathbb{R}^n$, then ∇u is Hölder continuous on compact subsets of D. This result extends work of Evans [2] and Ural'tseva [11]. To be more specific we shall need some notation.

Let x be a point in n-dimensional Euclidean space \mathbb{R}^n , |x| the Euclidean norm of x, dx Lebesgue measure on \mathbb{R}^n , |E| the Lebesgue measure of a measurable set $E \subseteq \mathbb{R}^n$, and $L^P(E)$, 1 , the usual Lebesgue space of functions <math>f on E with norm denoted by $||f||_p$. Let $B(x,r) = \{y: |y-x| < r\}$, r > 0, $x \in \mathbb{R}^n$. Given a domain $D \subseteq \mathbb{R}^n$, let $W_1^p(D)$, 1 , denote the Sobolev space whose functional elements <math>u and their distributional partial derivatives u_{x_i} , $1 \le i \le n$, belong to $L^p(D)$ with norm

$$||u||_{1,p} = ||u||_p + \sum_{i=1}^n ||u_{x_i}||_p.$$

Let $C_0^{\infty}(D)$ be the space of infinitely differentiable functions with compact support in D. Let $W_1^p(D)$ be the closure in $W_1^p(D)$ of $C_0^{\infty}(D)$.

For fixed p > 1, let $u \in W_1^p(D)$ and put $\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$. Suppose that

(1.1)
$$\int_{D} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi \, dx = 0,$$

whenever $\phi \in \dot{W}_1^p(D)$. Here $|\nabla u|^{p-2}\nabla u$ is defined to be zero at each x where $\nabla u = 0$. Note that if u has continuous second partials in D, then (1.1) and the divergence theorem imply

(1.2)
$$\nabla \cdot (|\nabla u|^{p-2} \nabla u) = 0$$

in D. Therefore, we shall call u a weak solution to (1.2) in D. We remark that the smoothness of u in (1.1) cannot be deduced directly from theorems on weak solutions of elliptic equations of divergence type, since (1.2) is degenerate. However, Ural'tseva [11] and recently Evans [2] have shown that ∇u is Hölder continuous on compact subsets of D when $p \ge 2$. Moreover this result is sharp as