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1. Introduction. We present an elementary treatment of the strong maximal
function in R" and its associated covering lemma, as well as a simple technique
for obtaining analytic inequalities for other variants of the Hardy-Littlewood max-
imal function. While our treatment of the strong maximal function is suggested
by the work of Cérdoba and Fefferman [4], we have eliminated most of the ge-
ometry and functional analysis from their arguments. The result is an explicit,
self-contained argument which can be used in other product spaces without the
rich structure of R".

Although Hardy and Littlewood [7] used rearrangements in their original work
with the maximal function, most authors, such as Stein [12], have preferred to
work with distribution functions. Indeed, the standard arguments (using covering
lemmas) lead immediately to an estimate for the distribution function of a maximal
function. We show that the right sort of covering lemma also gives the rearranged
maximal function immediately. The advantages of working with rearrangements
are set forth clearly in the survey paper of Bennett and Sharpley [2]. We also
give some new inequalities for rearrangements here.

One of the novel features of the work of Cérdoba and Fefferman [4] is an
exponential integrability estimate for certain sums of characteristic functions of
rectangles, an estimate which is more or less dual to the basic inequality for the
strong maximal function. Unfortunately, much of their proof was omitted and the
estimate given is incorrect. We correct the estimate and give a direct proof using
rearrangements, rather than the duality argument they suggest. As far as we can
tell, the duality proof requires an additional step involving the invariance of R"
under dilations, whereas our argument is independent of geometry.

The heart of the work of Cérdoba and Fefferman is a selection theorem for
families of rectangles in R". Their arguments make extensive and ingenious use
of the geometry of dyadic rectangles. However, we know of no reason why the
dyadic case should suffice, and key portions of their argument fail in the non-
dyadic case. In general, two rectangles with a common cross section can meet in
a set whose measure is small compared to that of the original two rectangles; their
method requires that this sort of behavior be ruled out. We employ a different
selection process which treats the general case directly and simplifies the argu-
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