The Partially Isometric Factor of a Semigroup

MARY EMBRY-WARDROP

1. Introduction. Perhaps the best-known structure theorem for strongly continuous semigroups of operators on Hilbert space is a result of Cooper [1]: every isometric semigroup is unitarily equivalent to the direct sum of a unitary semigroup and a forward translation semigroup. This result was generalized in [3]: every partially isometric semigroup is unitarily equivalent to the direct sum of a unitary semigroup, a forward translation semigroup, a backward translation semigroup and a semigroup which decomposes into truncated shifts with respect to a direct integral decomposition.

A third structure theorem appears in [5]: every strongly continuous quasinormal semigroup (Q_t) is unitarily equivalent to the direct sum of a normal semigroup and a quasinormal weighted translation semigroup. (Q_t) is quasinormal when Q_t commutes with Q_t*Q_t .) The key to this decomposition is that (U_t) is a strongly continuous isometric semigroup where U_tP_t is the polar decomposition of Q_t . Consequently, Cooper's Theorem applies to (U_t) .

In this paper, we consider arbitrary strongly continuous semigroups (S_t) for which (U_t) is a semigroup and use the structure theorem for partially isometric semigroups to decompose (S_t) into the direct sum of four simpler semigroups (Theorem 4).

Three special semigroups play a crucial part in this paper. Two are defined on $\mathcal{L}^2(\mathcal{K})$, the Hilbert space of (equivalence classes of) weakly measurable functions from the nonnegative reals \mathcal{R}^+ into a separable Hilbert space \mathcal{K} . The *forward translation semigroup* $F = (F_t)$ is defined on $\mathcal{L}^2(\mathcal{K})$ by

$$(F, f)(x) = f(x - t)$$
 if $x \ge t \ge 0$ and 0 otherwise.

The backward translation semigroup $B = (B_t)$ is defined on $\mathcal{L}^2(\mathcal{K})$ by

$$(B, f)(x) = f(x + t)$$
 for all $x \ge 0$ and $t \ge 0$.

The truncated translation semigroup of index α is defined by

$$(T, f)(x) = f(x - t)$$
 if $0 \le t \le x \le \alpha$ and 0 otherwise.

The domain of (T_t) is the subspace $\mathcal{L}^2(\mathcal{H}, \alpha)$ of $\mathcal{L}^2(\mathcal{H})$ of all functions f with f(x) = 0 for $x > \alpha$. It is understood that $T_t = 0$ if $t \ge \alpha$.