Weak and Strong Solutions in Two Dimensions

LEONARD SARASON

Introduction. We shall consider systems

(1)
$$Lu = (A_1 \partial_1 + A_2 \partial_2 + \tilde{\kappa})u = f$$

of first order linear partial differential equations on a domain $\Omega \subset \mathbb{R}^2$ with a piecewise smooth boundary $\Gamma = \bigcup \Gamma_j$, where the Γ_j 's are the smooth pieces of Γ . For simplicity, and without loss as far as our results are concerned, we assume that $\Gamma = \overline{\Gamma}_1 \cup \Gamma_2$, and that the corner is at the origin. Let us assume that $A_j \in$ $\mathscr{C}^2(\bar{\Omega})$ and is symmetric, j=1, 2, that $\tilde{\kappa} \in \mathscr{C}(\bar{\Omega})$, and that A_1, A_2 , and $\tilde{\kappa}$ are constant outside of some sphere. Homogeneous boundary conditions will be assigned of the form

(2)
$$u \in N(x), x \in \Gamma, N(x)$$
 a subspace,

or equivalently, P(x)u(x) = 0, where P is an idempotent matrix function which is in \mathscr{C}^2 on Γ_1 and on Γ_2 , but may jump across the corner. L acts on functions $u \in C_0^2(\bar{\Omega})$; we denote the restriction of L to functions satisfying (2) by L^0 or, to specify the boundary condition, by L_N^0 .

Denote by ν the unit exterior normal on Γ , and set $A_{\nu} = \sum A_{j}\nu_{j}$. We shall assume that near the corner, Γ is non-characteristic (A_{ν}^{-1} is uniformly bounded), and that functions $u \in N$ satisfy uniformly in x either

(3)
$$u \cdot A_{\nu} u \ge c_0 u \cdot u, \qquad c_0 > 0, \quad \text{or}$$

$$(4) u \cdot A_{\nu} u \ge 0.$$

Finally, N must be a maximal subspace with respect to (3) or to (4). The maximal (weak) extension L_w^0 of L^0 is defined by setting $L_w^0 u = f$ provided

$$(f,\mathbf{v})_{\Omega} - (u,L^*\mathbf{v})_{\Omega} = 0$$

for all $v \in C_0^2(\bar{\Omega})$ which satisfy the homogeneous adjoint boundary condition $v \in N^* = (A_\nu N)^\perp$; here L^* is the formal adjoint of L. The minimal (strong) extension L_s^0 of L^0 is the closure of L^0 with respect to the graph norm in L^2 . We shall study when $L_w^0 = L_s^0$, at first restricting attention to the two-by-two elliptic case and to the three-by-three elliptic-hyperbolic case. In the two-by-two case,