On a Problem of H. Brezis and F. Browder Concerning Sobolev Spaces

JEAN-MICHEL CORON

I. Introduction. Let Ω be an open set of \mathbb{R}^N . We consider the real Sobolev space $W_0^{m,p}(\Omega)$, $m \ge 1$, $1 , that is the closure of <math>\mathfrak{D}(\Omega)$ for the norm

$$||u||_{m,p} = \left(\int \sum_{|\alpha| \le m} |D^{\alpha}u|^p dx\right)^{1/p}.$$

 $W^{-m,p'}(\Omega)$ (with 1/p'+1/p=1) is the dual of $W_0^{m,p}(\Omega)$. $\langle \cdot, \cdot \rangle$ is the scalar product in the duality between $W^{-m,p'}(\Omega)$ and $W_0^{m,p}(\Omega)$. $W^{m,p}(\Omega)$ is the set of functions of $L^p(\Omega)$ whose derivatives of order $\leq m$ are in $L^p(\Omega)$. Let $\mathfrak{D}^+(\Omega)$ be the set of nonnegative functions of $\mathfrak{D}(\Omega)$.

Let u be in $W^{m,p}(\Omega)$ and T be in $W^{-m,p'}(\Omega) \cap L^1_{loc}(\Omega)$. Let h be in $L^1_{loc}(\Omega)$. The purpose of this paper is to prove the following theorem.

Theorem 1. If for every function φ in $\mathfrak{D}^+(\Omega)$ we have

$$\langle T, u\varphi \rangle \ge \int_{\Omega} h\varphi dx,$$

then

(2)
$$T(x)u(x) \ge h(x)$$
 a.e. $x \in \Omega$.

Remarks. 1. This result answers a question raised in H. Brezis and F. Browder [1].

2. If, moreover, $h \in L^1(\Omega)$ it follows from (2) and a theorem of H. Brezis and F. Browder [2] that:

$$Tu \in L^1(\Omega)$$
 and $\langle T, u \rangle = \int_{\Omega} Tu dx$.

3. If T is not in $L^1_{loc}(\Omega)$ but is a Borel measure finite on compact sets of Ω we write

$$T = tdx + \mu$$

where $t \in L^1_{loc}(\Omega)$, μ is a Borel measure finite on compact sets of Ω , dx and μ