On Distal Flows of Finite Codimension

EDWIN IHRIG & DOUGLAS McMAHON

§0 Introduction. This paper was motivated by DeRiggi and Markley's paper on codimension one flows—free minimal actions of R^n on compact (n + 1)-dimensional manifolds without boundary. In [DM] they show that if a codimension one flow is distal, then it is almost periodic. We prove several generalizations of this by using a refinement due to Bronstein, and also to Rees, of Furstenberg's structure theorem for distal minimal flows—a distal minimal flow may be obtained as a tower of flows X_i and homomorphisms $\phi_i^{i+1}: X_{i+1} \to X_i$, $i \le \theta$ where X_0 is the singleton flow, $X_{\theta} = X$, and the ϕ_i^{i+1} are almost periodic homomorphisms (in the refinement, quotient Lie group homomorphisms). By this approach the codimension p case for minimal distal flows is easily handled—basically there is a tower with $\theta \le p$.

We would like to thank Markley for telling us about the refinements of Bronstein and of Rees.

§1 **Distal flows.** We first establish our notation and summarize some basic known results. We will often use X to denote the flow (X,T) as well as the phase space. For convenience we will assume all topological spaces, including X and T, are separable, locally compact, and metric. These conditions are needed for most of the arguments we use. A homomorphism $\phi: X \to Y$ is assumed to be surjective.

Let
$$R(\phi) = \{(x, x') : \phi(x) = \phi(x')\}.$$

The relative (or ϕ) proximal relation

$$P(\phi) = \{(x, x') \in R(\phi) : \lim xt_n = \lim x't_n \text{ for some net } t_n \text{ in } T\}.$$

A point x is said to be a ϕ -distal point if $\{x':(x,x') \in P(\phi)\} = \{x\}$. We say ϕ is distal if every point in X is ϕ -distal. We call X distal if the map $\phi_0: X \to \{0\}$ is distal (here $\phi_0(x) \equiv 0$). The smallest closed invariant equivalence relation containing $P(\phi)$ is called the relative distal structure relation and is denoted by $S_d(\phi)$. The induced homomorphism of $X/S_d(\phi)$ onto Y is distal. The relative regional proximal relation

$$Q(\phi) = \{(x, x') : \text{there exist nets } x_n, x'_n \text{ in } X \text{ and } t_n \text{ in } T$$

such that
$$x_n \to x, x'_n \to x', x_n t_n \to x, x'_n t_n \to x$$
 and $(x_n, x'_n) \in R(\phi)$.