Truncations of BMO Functions
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§1. Introduction and preliminaries. In dealing with function spaces con-
taining unbounded functions one often proves theorems for the bounded functions
in the space, then passes to the general case by some sort of limiting argument.
One way this is done is by truncating the function, that is by chopping it off
above a certain height, applying the result for bounded functions, then letting the
truncation height go to infinity. In this paper we will study this process on a
particular function space, the space BMO of functions of bounded mean oscil-
lation. It turns out that on this space truncations behave especially nicely, and
one can use them to show that as far as certain questions are concerned BMO
functions look the same as bounded functions.

The following definitions and notations will be used in the sequel.

Definitions. 1If fis a complex-valued function on some space and p > 0,

fx) if | f()] < p
T,f(x)=4 J&® if S
e if [ f(0)] > p.

R4 ={z = (x,y): x €ER%y > 0}.
For z = (x,y) € R%"! we denote by P, the Poisson kernel for z:

Yy
|x _ t|2 + y2)(d+1)/2

P,(1) =cy (

where ¢, is chosen so that [z«P,(t)dt = 1. We denote by d., the probability mea-
sure dp.,(t) = P,(t)dt. For a function f on R? we denote by f(z) the harmonic
extension of f, f(z) = fgefdp.,. The space H' is the usual real-variable Hardy class
studied in [10]. For a set E C R?, |E| denotes the Lebesgue measure of E. The
space BMO is the set of functions f for which
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where Q denotes a cube in R? with edges parallel to the coordinate axes and
fo=1/|0| Jof. Itis a well-known consequence of the John-Nirenberg Theorem
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