Resonances in Scattering by a Resonator

CLAUDIO A. FERNÁNDEZ

1. Introduction. A number of mathematical descriptions of resonances for Schrödinger operators has been studied by different authors [5], [14], [15]. On the other hand, in the context of the Lax-Phillips Scattering Theory [11], the concept of scattering frequencies is considered; these complex frequencies present resonant properties for the wave motion in exterior regions.

Here we also deal with exterior problems and study the resonance phenomenon for the operator $H=-\Delta_{\Omega}$, the usual self-adjoint extension of the negative Laplace operator in an exterior domain $\Omega\subset \mathbf{R}^3$ with Dirichlet boundary conditions. We shall assume that Ω is a connected region with smooth boundary such that the obstacle $0=\mathbf{R}^3-\Omega$ is compact.

With an adequate choice of units, the operator $H=-\Delta_{\Omega}$ can be viewed as the Hamiltonian (energy observable) for the physical system which consists of a single quantum mechanical particle moving in Ω . The states of this system can be represented by the unit vectors in the Hilbert space $\mathcal{H}=L^2(\Omega)$.

We denote by H_0 the free Hamiltonian $-\Delta$, viewed as a self-adjoint operator on $\mathcal{H}_0 = L^2(\mathbf{R}^3)$.

It is physically clear and mathematically known (see for example [6], [12]), that there is a good scattering theory for the pair H_0 , H. Therefore, the operator H is absolutely continuous and its spectrum consists of the interval $[0,\infty)$. In physical terms, this means that any state with Hamiltonian H is a scattering state and, as such, it must have a finite lifetime.

Following Lavine [8], [10], we characterize a resonance as a state $\phi \in \mathcal{H}$ which is concentrated in a bounded region $B \subset \Omega$ and which is almost an eigenvector of H in the sense that the spectral measure $\langle \phi, E_H(\lambda) \phi \rangle$ of H at ϕ is concentrated near a point $\lambda_0 \in \sigma(H)$ (the corresponding resonant energy). By the results we establish in Section 2, it then follows that ϕ will have unusually long sojourn and transit times.

In Section 3 we consider the case where the obstacle has a partially opened cavity and we provide explicit estimates for the spectral concentration of the resonances in terms of the width of the channel that connects the cavity with the exterior.

2. Resonant states. As in [8], we define the *energy width of a unit vector* $\phi \in \mathcal{H}$ about a real number λ_0 to be