Errata: The Group of Homotopy Equivalences for a Connected Sum of Closed Aspherical Manifolds, Vol. 30 (1981), 249–260

DARRYL McCULLOUGH

While the overall picture presented in [M] is fairly accurate, several incorrect statements appear. In this note, I will indicate the basic error and its correction, and give corrected versions of the affected statements. As penance, I offer a precise formula for the index of the image of $\Phi: \pi_0(EM) \to \operatorname{Aut}(\pi_1(M))$ when M is a connected sum of closed aspherical n-manifolds ($n \ge 3$). Familiarity with [M] will be assumed.

The homomorphism R on p. 253 of [M] is not well defined, as it need not preserve relations of types (5), (7), and (9) in $Aut(\pi)$. In its stead, we define a left action of $Aut(\pi)$ on $\bigoplus_{i=1}^{n} \mathbb{Z}/2$ by:

$$\mu_{ij}(\omega) \cdot (z_1, \dots, z_i, \dots, z_j, \dots, z_r) = (z_1, \dots, z_i, \dots, w_1(\omega)z_j, \dots, z_r)$$

$$\phi_i \cdot (z_1, \dots, z_i, \dots, z_r) = (z_1, \dots, \deg(\phi_i^*)z_i, \dots, z_r)$$

$$\omega_{ij} \cdot (z_1, \dots, z_i, \dots, z_j, \dots, z_r) = (z_1, \dots, \deg(\omega_{ij})z_j, \dots, \deg(\omega_{ij})z_i, \dots, z_r).$$

Since $\phi \cdot (-z) = -(\phi \cdot z)$, there is also an induced action of Aut (π) on

$$J = \bigoplus_{i=1}^{r} \mathbf{Z}/2/z \sim -z \cong \bigoplus_{i=1}^{r-1} \mathbf{Z}/2.$$

Using the standard projections $\pi(a)$, described on p. 254 of [M], we identify $\operatorname{Aut}(\pi_1(M(a)))$ with $\operatorname{Aut}(\pi)$. Thus we obtain actions of the $\operatorname{Aut}(\pi_1(M(a)))$ on $\bigoplus \mathbb{Z}/2$ and on J.

The new version of Theorem 3.1 is:

Theorem 3.1. Let $\phi \in \operatorname{Aut}(\pi)$ and $a \in \bigoplus_{i=1}^r \mathbb{Z}/2$. Then there are homotopy equivalences $f: M(a) \to M(\phi \cdot a)$ and $hf: M(a) \xrightarrow{i=1} M(-\phi \cdot a)$ inducing ϕ .